
Tagion Technical Paper

B. Rasmussen, Carsten and Simonsen, Theis

July 2, 2020

Abstract

This paper describes an alternative implementation of a Distributed Ledger Technology
(DLT) network compared to a classical network such as Bitcoin. Most other DLT networks
use Prof-of-Work consensus mechanism to secure Byzantine Fault Tolerance (BFT) of the
data storage. In the Tagion network, the BFT is based on the Hashgraph algorithm and data
storage on a new type of Distributed Hash Table (DHT) which makes it efficient to maintain
a distributed database and guarantee BFT. The Hashgraph algorithm is deterministic and
not probabilistic, allowing ordering of transactions. The order of transactions combined
with the Lightning Network and the Tagion matching and settlement protocol constitutes a
Decentralised Exchange (DEX) protocol on the Tagion network.

To reduce the probability for the network to be taken over by an evil group of actors, a
new governance model is proposed, which does not rely on a central control or a group of
master-nodes. It is built on the ideas of self-governance of common resources and democratic
principles resulting in a Proof-of-People protocol and reputational scoring model that relies
on the nodes to engage in dialogue with each other.

https://cbleser@github.com/tagion/tagion-paper.git
8181ceb6cdd912d9a284bf28607571d55ad2ddfb

version v1.155-master

Contents

1 Governance 1
1.1 Node Governance . 2

1.1.1 Reputational Scoring Model . 2
1.1.2 Proof-of-People . 5

1.2 Economic Governance . 7
1.2.1 Stable supply . 7
1.2.2 Stable intrinsic value . 7

1.3 System Upgrade Governance . 9
1.3.1 Node Base Protocol Upgrade . 9

1.4 Common Resources . 10
1.4.1 Open Source code . 10
1.4.2 Patents . 10
1.4.3 “Tagion” Trademark . 10

2 Hashgraph Consensus Mechanism 11
2.1 Gossip protocol and Wavefront propagation . 12
2.2 Consensus Ordering . 13

3 Distributed Database (DART) 14
3.1 Sparse Merkle Tree . 16

4 Special Records 17
4.1 Name card contract . 17
4.2 Node contract . 18
4.3 Sub-Network contract . 18

5 Scripting Engine 20

6 Transaction Scripts 22

7 Business Model 24

8 Parallelism 25

9 Node Stack 26

10 Privacy 28

11 Decentralised Exchange using Lightning Network 30
11.1 Trading flow using Lightning and Tagion Network 30

11.1.1 Price discovery and matching . 30
11.1.2 Exchange execution rules . 32

A HiBON Data format i
A.1 HRPC – HiBON Remote Procedure Call . iii

B Crypto “Bank” bill v

C Network vii

a

D Network Security viii

E DEX Trading Example xi
E.1 DEX After the Trading Match . xiii

F Gene Distance xvii

G Mutation rules xviii
G.1 Mutation base . xviii
G.2 Population gene mutation . xviii
G.3 Production gene mutation . xviii
G.4 Transaction mutation . xviii

H Node Selection xix

I No central key-pair re-generation xx

b

1 Governance

Tagion is a common resource(s) that constitutes the network, Tagion trademark, code and gov-
ernance mechanisms, which are governed by a common resource governance model. The model
is based on the ideas and design principles of Elinor Ostrom’s work with (self-)governing of the
commons. The overall perception of resource governance in today’s society is between the ex-
tremes of private or state ownership. There is a third option called Commons, which can be
translated to self-governance or community governance. It is much more efficient as well when
it comes to governing of common resources, as Elinor Ostrom argues and proves. She won the
Nobel Prize in Economics in 2009 for her work within the field [7, 6]. We believe a monetary
system and banking network should be a common resource because all users of it have an equal
interest in the system; thus, the system should serve all interest equally by being governed as
a common resource. Designing a governance model for a common requires clear rules for the
boundaries, resources and actors in the system, which is described in this chapter. [8, 2, 5]
Tagion has three main governance types that are listed in table 1 and elaborated in the next
sub-sections. More the common resources of Tagion are elaborated in section 1.4.

Governance Type Purpose
Node Defines rules and processes for nodes.

I.e. algorithms controlling the node scoring model and
proof-of-people protocol.

Economic Defines rules and processes for ecnomics in the system.
I.e. algorithms controlling the rewards and fees.

System Upgrade Defines rules and processes for system upgrades.
I.e. algorithms for node software upgrades and script
function upgrades.

Table 1: Overview of the three main governance types for the system: Node, Economic and
System Upgrade Governance.

1

1.1 Node Governance

The purpose of Node Governance is to ensure that 2/3 of the nodes in the network are not evil
actors. That is accomplished by a reputational scoring model and a proof-of-people protocol that
is a social heuristic protocol. Both components are inspired by Charles Darwin’s evolutionary
theory of how species best survive in a new environment with the two main elements 1) most
diversified paired genes and 2) caretaking of the offspring. These two elements are embedded in
the scoring model and protocol.

Defining a node is done from democratic principles, where all can participate and where one
person has one vote. These principles are translated into a permissionless system where one
node has one vote, where one person only controls one node. It would ensure full distribution of
nodes because centralisation is not possible. It is not possible to ensure 100% that one person
can only control one node, but it is the aim. More, it is not required that the network is fully
distributed to ensure the network is secure, the requirement is that it is distributed in a way,
where many actors control an insignificant amount of nodes avoiding centralisation of power like
in other networks, where few nodes may have majority control.
One of the downsides of democracy is that all have the same voting power independent of
contribution. Thus, the Tagion system has a scoring system that values loyalty that is work
through time, but still is open and fair for all to participate. The social component in the proof-
of-people protocol tries to ensure that one person only has one node and is a real person. The
protocol also selects users randomly to become nodes ensuring even distribution and fairness.

1.1.1 Reputational Scoring Model

The model consists of actors, variables and the boundaries of the actors, including the transition
over a boundary.

The Actors in the Tagion Network are defined in table 2.

Actor Description
All Users All the users of the system defined loosely as anyone

who has used the system.
Offline Nodes ON Nodes not available for the network
Offline Prospect Nodes
OP

Prospect nodes not available for the network

Online Users T All online users in the system.
Prospect Nodes PN PN are a subset of T , which are users who have

received a node coupon and want to become a node.
Nodes N N are a subset of T , which are users who have be-

come verified as nodes and are available for the net-
work.

Active Nodes AN AN are a subset of N . AN operate and constitute
the live Tagion network.

Table 2: The actors in the Tagion Network.

The variables of the actors and scoring rules for the model are defined in table 3.

2

Variable name Definition and scoring rule
Birthdate The date a prospect node becomes a node.
Gene A gene is unique for each node.
Gene score (Gene-
diversification points)

Each time a node mates with another node, a score
is calculated for them both based on how diverse
their genes are compared to each other. They mate
each time verification of a prospect node takes place,
when an active node makes an epoch, see section 2,
and when two nodes choose to mate and validate
each other.

Node age A measure of a node’s total available time for the
network. Time as both a node and an active node.
It increases both as a node and active node when
available for the network.

Active time Time as an active node. It increases when a node is
active.

Prospect score The Prospect score variable is a measure of how
much the prospect node has been available to the
network. It increases when the prospect node is
available and decreases when not.

Contribution loyalty A measure of how much the node has been active and
stayed available. Non-availability of a node decreases
contribution loyalty; being an active node increases
loyalty.

Table 3: Variables and scoring rules for the reputational scoring model

The actors with their boundaries to each other and variables are illustrated in fig. 1, the
boundaries and transition over them are described below.

3

All Users

TOnline Users

 · Birth date

 · Gene

 · Gene score

 · Node age

NNodes

 · Gene

 · Gene score

 · Prospect score

Prospect Nodes PN

 · P
rospect score

Offline Prospect Nodes OP

 · Node age

 · Active time

 · Contribution loyalty

ANActive Nodes

 · Contribution loyalty

ON

Offline Nodes

4

1

2

3

5

6

Figure 1: Governance Model with actors, boundaries and variables in the Tagion system. The
green triangle indicates an increase for the actor, the red triangle a decrease and the yellow an
increase after an action i.e. a mating transaction.

The boundaries are labelled with numbers in fig. 1 which are defined as:

1. Any user can go from online to offline and vice versa. The network is open for all; it means
anyone who has not yet used the system can become a user as well.

2. Any user can become a node over time and must first become a prospect node. The
transition is based on a random selection, a lottery, to help ensure a broad representation
of users as nodes. When going from a user to a prospect node or node, in general, the
user is no longer anonymous, but a public servant with a public name record in the system
section 4.1. See section 1.1.2 for the full protocol.

3. When a prospect nodes have been socially verified and earned enough prospect score that
is being available for the network for a period of time then the prospect node becomes a
node, i.e. born and receives a gene number and a birth date. See section 1.1.2 for the full
protocol.

4. Nodes are chosen randomly within a given interval continues to be active nodes, and active
nodes are chosen randomly to be inactive nodes. Nodes and active nodes are swapped
back and forth continuously to make it impossible to predict, which nodes are active in 10
minute intervals, enhancing security. A node is selected by a Unpredictable Deterministic
Random (UDR) algorithm, where the probability of being chosen as an active node or to
continue as an active node depends on four variables: Gene score (gs), active time (at),
node age (no) and contribution loyalty (cl).

P(active)(gs, cl, na/at) (1)

5. A node can go from online to offline and vice versa, if offline, it is not possible to be an
active node or to become an active node.

4

6. A prospect node can go from online to offline and vice versa.

1.1.2 Proof-of-People

The Proof-of-People protocol is a heuristic protocol with a random and social component. Heuris-
tic, because it aims to secure the democratic principles of one person one node and that it is
an actual person behind a node. One person one node cannot be accomplished, but the social
component would accomplish an approximation to this. The social component makes it diffi-
cult to manage more than one node, and the scoring mechanism makes it less favourable. The
approximation would ensure a highly-distributed system when it is combined with a random
selection of new prospect nodes. It means no actor or a few actors would control the network
when the number of nodes has a certain size, making it secure.

The protocol for becoming a node is:

1. A user creates or has a name record in the system, see section 4.1.

2. A user has a name record with an age of more than one month. The user makes a prospect
node record transaction where a node-transaction fee is paid together with a staked amount.
The prospect node record contains the user’s public key, has the stake attached to it and
is linked to the name record.

3. With an average of 10 minutes, a prospect node record is chosen randomly, which burns
the stake and gives a node coupon. Then the prospect node should send a proof of activity
from within seven days. The proof is simply a public key to a bill in the DART, which are
created within the last seven days.

4. When the user has sent the proof two random active nodes verify the proof and gives a
gene to the prospect by crossing their genes with each other. The gene is added to the
prospect node record and both parents sign the prospect node record.

5. The rewarded node in the same epoch as where the coupon was issued is the first to identify
the prospect in a dialogue. If the rewarded node validates the prospect, they make a mating
transaction, which both signs. Both nodes receive gene score points for this transaction,
and the mating transaction is linked to the prospect node’s record. The gene score points
are symbolised with the yellow triangle on fig. 1.

6. Two semi-determined identifications should be made by two of the next ten epoch rewarded
nodes. The prospect engages in a dialogue with potential validators to get two mating
transactions. Same mating transaction as in item 5.

7. Now the node has received three identifications, which means it can start participating as a
prospect node on the network, receiving prospect score points. When the node has reached
a prospect score threshold the step is completed.

8. A second semi-determined identification of the prospect is made with two nodes from the
last ten epochs from the point the prospect score is reached. Same mating transaction as
in item 5.

9. The last mating transaction creates a birth date in the prospect node record, making the
prospect node a full node on the network.

There are three main components to the protocol:

5

1. The first selection of prospect nodes introduces a certain time-lag by the need of having a
name record with an age of 1 month, and by having a stake amount and node transaction
fee ensure small and zero transactions cannot be used to increase chances of winning the
coupon. The fee and stake ensure commitment as well.

2. The requirement of activity within the last seven days creates a requirement for the user
to have activity in the network.

3. A social component that forces new nodes to engage in dialogue with other nodes creating
relations and communities. It is a local or virtual identification and dialogue with each
other following the protocol. Both parties receive gene score points when mating raising the
chance of rewards creating a direct economic incentive and indirectly by ensuring non-evil
nodes in the system, ensuring the long-term sustainability and economic network worth of
the system. Therefore, all nodes have a natural incentive to ensure that new nodes are real
persons with honest intentions.

A premise for the social protocol to work is that users engage in dialogue; it requires social
responsibility and engagement. As long as this premise is true, the node governance components
can be adjusted based on the real experience with the test network, where a balance between
the work and drag of being and becoming a node compared to the actual user adoption and
distribution.
Besides the proof-of-people protocol, a continuous evaluation of nodes can be imaged. E.g. each
month, all nodes need to engage in dialogue with 3 other nodes receiving gene score points.
More, the future perspectives of sharding of the network would allow the network to be more
local based removing cultural and language barriers, which can foster people to educate each
other and build a culture around the network.

6

1.2 Economic Governance

The economic model of Tagion tries to stabilise the intrinsic value of the system, rather than
being pegged to external currencies or assets. There are two main phases of economic governance,
where the first is a linear and stable supply. The second phase builds on a model that aims to
keep the intrinsic value of the currency stable by controlling the supply of money.

The idea is that money reflects the underlying value of an asset; money in itself does not have
value. Production in our society creates the value: the assets, which values are represented by
money, make them easy to trade. Being able to represent a value for the persons using the money
need to trust that they can use the money elsewhere, and it needs to have a stable value over
time. The reason a currency is trusted is that it has adoption and a stable value over time, and
not because money is backed by gold or state-backed. Adoption of the Tagion network happens
over time, but the stability of the Tagion currency need to be addressed, making it trusted.

1.2.1 Stable supply

Creating a stable supply with full transparency like in Bitcoin (though decreasing supply, stable)
creates a trust in the system. No actor can create a significant supply and dilute the value and
the trust in the system. Some systems have a built-in cap in the system, which need to be
changed programmatically, like Bitcoin. Tagion does not have a built-in cap, because the supply
of money should somehow correspond to the adoption, thus the representation of values in the
system. Otherwise, destructive deflation in the system can happen to cause the real use of the
system to fall, because people tend to hold and speculate with the money instead of using it. Of
course, inflation can also be destructive, but a steady and in-significant increase in the supply
of money should not create hyperinflation in the system. The most important thing would be
that people keep using Tagions because they trust the money and do not hold on to them due
to deflation. The first couple of years in a monetary systems lifetime high volatility is expected
because of the low numbers of actors, which can easily both make the internal and external value
go up and down because each actor’s transaction can be significant in the system. As adoption
occurs and the number of actors in the system becomes significant compared to a single actor,
then price volatility decreases, because no single actor has a significant effect on the system.
When this adoption size is reached, it leads us to the next phase, where an algorithm controlling
the money supply is stabilising the intrinsic value.

1.2.2 Stable intrinsic value

Milton Friedman stated that “Inflation is always and everywhere a monetary phenomenon”, it
means it has nothing to do with the production in society [4]. The relation between money and
the production in society can be expressed by the equation of exchange: [3]

M · V = P ·Q (2)

M is the quantity of money.

V is the velocity of money (the number of times per year the average currency in the money
supply is spent).

P is the average price level of sold goods and services.

Q (or Y) is the real GDP for an economy.

7

This equation has some useful constructs of measure of money within a monetary system,
but also an external measure of GDP, which is not available for Tagion because Tagion only
measures on internal variables. Tagion sees an economic system as a flow system and not as
static equilibrium. The constructs in the model are used but translated into a dynamic flow
model with only internal variables. A translation of the constructs to variables in the Tagion
system could be:

M is the quantity of Tagions in the system. That is a variable directly measurable in the
system.

V is the number of times per year the average Tagion in the money supply is spent. It can
be mapped to the variable of the number of transactions and average supply of money per
year, which are direct variables in the system.

Q can be mapped with an average number of nodes in the system, which is an expression for
users and adoption in the system thus how much of users’ value does the system represent.
More variables as the acceleration of transaction, average transaction per time unit, average
transaction size and acceleration can all be potential variables for the constructs in the
system.

P is the average price level in the Tagion monetary system, which can be expressed as:

P =
M · V
Q

(3)

The aim would be to keep the price level P stable, where the only controlled variable is
the supply of money, which can be regulated after a model by an algorithm.

These variables need to be modelled, made construct-validation, correlation and causal-
relation tests. It requires a system of a particular size and much testing to model this. Tagion
is confident that it is possible to keep intrinsic stability by such a model in the system. The aim
is not an xx % inflation target of the system, which makes no sense when external constructs as
GDP are not measured, but to keep the intrinsic value in the system stable. It is accomplished
by creating adoption of the system and an intrinsic stability mechanism in the system. It should
generate long-term trust and stability over time, becoming a store of value. External parties
must not control the money supply and system with their interest which delute the trust and
value of the money.

8

1.3 System Upgrade Governance

Upgradability has been taken into consideration on two main levels: Node Software, which
concerns the actual base protocols for running a node, and Script Function Upgrades, which
concerns the function scripts in the network. All scripts are stored in the DART, meaning it
does not require an upgrade of the base protocols, but just a change of script function state in
the DART. Function scripts are node governance and economic governance algorithms.

1.3.1 Node Base Protocol Upgrade

Upgrade of the node base protocols should be backwards compatible with the previous version.
It means the software can run the current network version and the new one, but it does not mean
the networks are compatible, which can be divided into two categories minor and core upgrades:

Minor and bug-fixes upgrades This upgrade does not change the structure of the database
and core algorithms, meaning that it can run in the same network as the current. It requires 5/6
of the active nodes to approve the upgrade.

Core and structural upgrades Core and structural upgrades make hard changes, which can
be core algorithms for cryptography or structure of the database, which make the current network
incompatible with the new one. It means that the nodes approve the new network operates both
the current and new network in parallel until the upgrade is approved. It requires 5/6 majority
of the active nodes to approve the upgrade and to enforce the new network version.

Script Function Upgrades Script function upgrades are when a script in the database in the
network is changed, created or deleted. It does not require installation of a new binary on the
computer the node is running on. Before a new function is approved, 5/6 of active nodes need
to approve it.

9

1.4 Common Resources

The Tagion network is a common resource meaning any state or private entity should not own
it because it serves a common purpose of the whole community and users of the system.

The resources are the actual network, governance mechanism all the IP (intellectual property)
related to Tagion, which is listed below.

1.4.1 Open Source code

The source code is released under a GNU GPL or similar license and owned by the Tagion
Foundation. The licensing is in process. Closed or commercial projects do need permission to
use the source code. At the moment the git repository is not opened. Preparations to open the
repository is being made. Before the open-source license is defined, and the open patent license
has been given to the Tagion Foundation from I25S ApS, the repository cannot be opened. It is
planned to open the project as soon as possible. People with legimite reasons to verify the code
can write to info@tagion.org and a copy of the source code can be shared after a signed NDA is
in place.

1.4.2 Patents

EU patents are filed in the company name I25S ApS. The patents concern 1) a database system
and 2) and network gossip protocol. The database system, which is implemented as the DART
in Tagion, is a distributed database system that can efficiently search and store data based on a
cryptographic hash enabling the network to execute transactions in parallel enabling performance
and scalability. The gossip protocol is an efficient way to share information among all members
of the network.

Open Licenses An open license is defined to be a free patent license given to the open-source
project that cannot be revoked. All open-source projects having the same type of license as the
Tagion Project are as a rule of thumb granted a free license that cannot be revoked automatically.
Other open-source projects need to apply for an open license. The licenses cannot be revoked
when first given. The Tagion Foundation and project is given an open license by I25S. Projects
that fork the Tagion code need an open license by default.

1.4.3 “Tagion” Trademark

An EU Trademark is registered for “Tagion” and owned by the Tagion Foundation including
related internet domains. The reason for the trademark is to make sure that projects, which are
forking the source and governance model, cannot call themselves Tagion XYC. It confuses the
end-users and community thus multiple projects with similar names should be avoided. Tagion
can protect itself from other projects or entities that wish to associate themselves with Tagion
for malicious purposes.

10

2 Hashgraph Consensus Mechanism

The Tagion network is based around a Hashgraph consensus algorithm and mathematical proof
discovered by Leemon Baird [1]. This algorithm solves the Byzantine Generals’ Problem of
generating a consensus order list of actions between distributed computer nodes connected in a
network. If more than 2/3 of the nodes follows the same consensus rules, all the nodes will, in
finite time, reach the same order of events. The network distributes the information via a gossip
protocol, sending information about the data received from the other nodes in the network. All
the nodes solving the Hashgraph algorithm will come to the same order of transactions. Figure
1 below shows a Hashgraph of gossip information representing the information flow between
network nodes. In finite time all nodes in the network will be able to build the same Hashgraph
of gossip information.

b1
Ω=2

A=−5

b4
Ω=4

A=−3

f5
Ω=5

A=5b5
Ω=5

A=−2

c8
Ω=9

A=5

a5
Ω=4

A=−1

e3
Ω=3

A=1

e4
Ω=4

A=2

e5
Ω=5

A=3

e6
Ω=6

A=4

f9
Ω=8

A=6

e7
Ω=7

A=7

c0
Ω=1

A=−2b0
Ω=1

A=−6a0
Ω=1

A=−4

a1
Ω=2

A=−3 c1
Ω=2

A=−1 f1
Ω=1

A=2

b2
Ω=3

A=−4 c2
Ω=3

A=0

a3
Ω=3

A=−2 c3
Ω=4

A=1

d1
Ω=2

A=−3

d2
Ω=3

A=−2

e1
Ω=2

A=−1

e2
Ω=3

A=0

d3
Ω=4

A=−2

d4
Ω=5

A=−1

d5
Ω=6

A=0

f3
Ω=3

A=3

f4
Ω=4

A=4

c6
Ω=7

A=3

c7 Ω=8

A=4

b7
Ω=8

A=−1

a9
Ω=10

A=1

Ω=13

A=5c12

a8
Ω=9

A=0 a8
Ω=9

A=0

d10
Ω=11

A=6

d9
Ω=10

A=6

Ω=12

A=5c11

e9
Ω=8

A=8

c5
Ω=5

A=2

Event only seen by Node 1 b2

e5Node 4 latest event

Event only seen by Node 4 f3

e2Event seen by both Node 1 and 4

e7Future events

b5Node 1 latest event

e6Node 1 latest event

N
o
d
e−

5

N
o
d
e−

4

N
o
d
e−

3

N
o
d
e−

2

N
o
d
e−

1

N
o
d
e−

0

ti
m

e
li

n
e

Figure 2: Hashgraph with parameter Ω

Each vertical line represents a compute node and each circle an event. The line between the
events represents the communication of the events between the nodes. The events coloured red
define a witness that is used to divide the consensus into rounds. Each round decides a list of
events to be collected. This list of events is called an epoch and must be sorted into the same
order as all other nodes. The description of the Hashgraph algorithm can be found in [1].

11

2.1 Gossip protocol and Wavefront propagation

The Hashgraph algorithm uses a gossip protocol called “gossip about gossip” to propagate infor-
mation between the nodes. It means node A sends all the information of the communication that
it knows to a randomly selected node B. This enables node B to construct the same Hashgraph
as node A.

In the Tagion network, a protocol called Wavefront is used to exchange information between
two nodes, ensuring that node A and B only need to communicate three times to share the state
of the graph. Each node keeps track of an integer value called Altitude. Altitude is increased
by one for each event created by the node. Each node stores its current view of Altitude for
each node in the network. By exchanging information about the Altitude between two nodes,
both can figure out if their Wavefront is higher and send a list of events which are in front. The
Wavefront information exchange has four states:

1. Node A selects random Node B and sends a list of all Altitudes. This state is called a
tidal-wave.

2. Node B receives a tidal-wave from Node A. If Node B has already sent a tide-wave to Node
A, then Node B will send what is called a breaking-wave to Node A. Otherwise Node B
will return a list of all events which are in front of the tidal-wave of Node A. This state is
called first-wave.

3. If Node A receives a first-wave from Node B, it returns a list of all the events which are in
front of Node B. When this state has been reached the wavefront exchange ends.

4. If Node A or Node B receives a breaking-wave, the wavefront communication is dropped.
This prevents both nodes from going into an infinity echo where they forever send informa-
tion back and forth. In the network, a node will often have many simultaneous wavefront
connections so it will sometimes receive the same event package from other nodes. Then it
will drop any duplicated events it receives.

12

2.2 Consensus Ordering

In the Tagion implementation of the Hashgraph algorithm, an Event is only allowed to point one
or none “other parent” which is called a “father-event” as shown om fig. 3. This strategy aids
to solve the graph forking problem and simplifies the consensus ordering.
The “self-parent” is defined as a “mother-event” in the Tagion implementation. An event must
have a mother-event but doesn’t have to have a father-event.

Each event points to the previous event called mother-event, and some also point to another
father-event. The mother-event is defined as the previous event from the same node. The father
is an event sent via the gossip network from another node.

The order Ω is calculated as:

ΩB,k+1 = max
(
ΩA,k,ΩB,k

)
+ 1 (4)

The events in the epoch list are sorted by the order Ω. If the order of two events is equal,
the hash h of the event is used to calculate the order. The flowing expression is used to order
the events:

lA,B =

{
ΩA < ΩB if (ΩA 6= ΩB)

H(hA ‖ hB) < H(hB ‖ hA) otherwise
(5)

The parameter lA,B is ′true′ if event A is ordered before event B.

k+1
B

k
B

k
A

P
o

in
ts

 t
o

 m
o

th
er

P
o

in
ts

 t
o

 d
au

g
th

erPoin
ts

to
 fa

th
er

Poin
ts

to
 so

n

Figure 3: Events and relations

13

3 Distributed Database (DART)

Distributed Archive of Random Transactions (DART) is built to store and keep track of trans-
actions in the Tagion network. The database efficiently handles the removal and addition of
transactions in a secure and distributed manner. Each transaction is stored in a distributed
hash-table using a cryptographic hash of the transaction T data. Each transaction is identified
by a unique hash value h. The transaction is put into a table ordered by the numerical value of
the hash.

h = H(T), h ∈ [0 : 2N−1 − 1], N ∈ N (6)

Si ∈ [i · 2N−M : (i+ 1) · 2N−M], i ∈ [0 : m− 1], m = 2M (7)

H is the cryptography hash function

N represents the number of bits

M represents the bit witdh of the sector

h hash value

S is sections

m hash-table divided into sections S

1

2

3

4

5

5

Section

Node

Section Hash

Bull’s Eye

Section SMT

Central SMT

Figure 4: The structure of the DART database

14

The hash-table is distributed between the nodes in the network, where each node manages a
sample of sections. A section must be managed by more than Q nodes to keep redundancy and
security of the data. Each node must maintain the database sections within the nodes section
angle. This means adding and removing the transaction and updating the Merkle-tree root of
the section hash. The DART is updated according to the transaction list in an epoch generated
by the network. The scripting engine will evaluate actions in the epoch and decide if an archive
should be added, removed or selected. Selection of an archive means that archive is sent back to
the network and deleted from the DART. When a node updates a section, it must calculate the
Section Merkle-root and sign it and send it to the network. The signed section and the selected
archive are distributed to the network via the gossip protocol. Each node will collect all the
signed roots of the updated section when the majority has been reached for all updated sections.
The node must calculate the Bull’s eye (Merkle root) of the DART and sign and distribute the
information via the gossip protocol. When the majority of the nodes in the network has reached
a consensus of the Bull’s eye value, the DART is considered to be updated. If no consensus has
been reached for DART, the current transaction in the epoch must be dropped, and the DART
must revert to the previous state. The Bull’s eye value is stored in a hash-linked chain of blocks
where each block points to the previous block’s hash. Each block contains the Bull’s eye pointer
and a block number. It ensures data integrity, the state of the database. The concept is shown
in the figure below.

C220 A3 C2 ..

A3 57 ..19 94

A3 57

20 A3 CA 48 ..4A 29

CA 48

20

A320

A3 CA 48 ..7C

D9

73

38 ..

20 A3 33 49 ..

20

94 ..

A4

48CA

57

A3

38 ..9B20 A3 C7

8A

20

20

Sector

R_0 R_1 R_2 R_3 R_4

Figure 5: The data structural layout of DART database

15

3.1 Sparse Merkle Tree

The data in a section is mapped using a Sparse Merkle Tree (SMT) which make it efficient to
add and remove archives into the Merkle tree.
The hash point into the DART is divided by rims. Rim zero is the most significant byte (MSB)
of the hash fingerprint of the archive. Rim one is the next byte in the hash etc.
In the current implementation of the DART, the first two rims are used as the section index.
Thus the DART has a total number of indices 216 = 65536 which is equivalent to the two bytes
unsigned number.
Each section stores the archive in a hash table. An SMT is used as a look-up table, and each
rim is sectioned into a sub sparse Merkle tree. It means that rim two is the first SMT and rim
three is the second SMT etc.
As a comparison, a traditional Merkle tree with 224 = 83 ≈ 16 · 106 Archives. To calculate a full
Merkle tree, it requires the calculation of around 32 · 106 hashes. By contrast, using an SMT
with 16 · 106 archives mean just around 2000 hashes have to be calculated.

Core protocol updates
The DART will be used for protocol updates by the following consensus. One or more nodes

will need to run the new protocol update in a parallel DART containing the same transaction
information as the current accepted DART. The new DART will have a new Bull’s eye, and
this will result in a fork of the Bull’s eye chain. When the majority of the nodes run the newly
upgraded nodes, they can decide to drop support for the old DART and run the new DART.
When enough nodes stop running the old DART, it will not be able to reach a consensus, and
the upgrade has completed.

DART garbage collection
A garbage collection script will run every (G) epoch and remove all the bills which are older

than a specified date. Bills that have not been used for a long period will be burned, which
ensures that the system does not contain dead bills/money. It is the owner’s responsibility to
recycle their bills before the expiry date.

16

4 Special Records

The archives stored in the DART using the hash-fingerprint as an index-pointer like in Distribute
Hash Tabel (DHT) (See section 3). The hash of an archive is calculated in two ways as follows,
if the archive does not contain #′param′ the hash is calculated from the binary data of the
HiBON archive and if the #′param′ exists this type of archive is call Parameter Indexed Archive
(PIA). For a PIA the hash-pointer is calculated for the content of the #′param′.

Parameter starting with a dollar sign is reserved for use as system parameters (like $′param′)
and should only be used for as such, or else the system will reject it as an error. Especially
the $type is used to set the type of an HiBON object. An PIA-archive must contain a $type
parameter.

Some of the parameter in those special archive has restricted access. The access ro means
that this parameter is set on the creation of the archive and can not be changed. The rc access
means that this parameter is controlled and updated by the network and can only be read.

4.1 Name card contract

A Network Name Card (NNC) is a record which are composed of two archives Name Card
Label (NCL) and Name Card Record (NCR) both of the archives are stored in the DART.

The NCL label card sets the NNC name and NCR record stores the data related to the
name-card (see table 5). The two archives are always updated in pairs in the network.

The hash-pointer of an NCL is calculated for the name-parameter and not for the archives
in itself. The NCL can and must only contain the parameter as shown in the table 4.

When an NNC is updated the NCR is updated, the $previous hash-pointer is set to the
previous NCR and the $index is increased by one. The $record parameter in NCL is set to the
hash-pointer of NCR and $sign is set to the signature of $record.

The $index of the first NCR is set to 0, and the $previous parameter is to hash value of
$pubkey of the NCL archive.

The $lang sets the type of restricted letters and symbols which is allowed to be used in the
NNC name.

Parameter Description Type Access
$type Set contract type to ’NCL’ string ro

#name Name of the name-card string ro

$lang Language letter code string ro

$time Creation date utc ro

$pkey Public key ubyte[] ro

$sign Signature of the $record ubyte[] rc

$record Hash pointer to the NCR archive ubyte[] rc

Table 4: NCL Network Name Card

17

Parameter Description Type Access
$type Sets the contract type to ’NCR’ string ro

$name Hash value of the NCR.$name ubyte[] ro

$previous Hash pointer to the previous NCR ubyte[] rc

$index Index number uint rc

$node Optional node record # rc

...

Table 5: NCR Network Name Record

4.2 Node contract

Network Node Record (NNR) is used to store the node data of the record

Parameter Description Type Access
$type Set contract type to ’NNR’ string ro

#node Public key for the node ubyte[] ro

$name Hash value of the NCR.$name # ro

$time Creation date utc ro

$sign Signature of $name by NCR.$pkey ubyte[] rc

$state The state of the (PN , N , AN) uint rc

$gene Node gene bit-string ubyte[] rc

Table 6: NNR Network Node Record

4.3 Sub-Network contract

Via a special contract executed on the Tagion Main Network (TMN) a Tagion Sub Network
(TSN) can be launched, this sub-network will create a new sub-DART which only can be
updated from the nodes running the TSN.
A group of nodes can initiate the sub-network by signing this contract and stake an amount in
TGS.
The rules for the TSN is set when the network is launched, and the rules can differ from the rules
in TMN. The TSN can be assigned to a group of nodes or fully open for all nodes. When a TSN
is launched an Tagion Sub Network Funds (TSNF) is created on the main network to hold the
funds for the fees in the main network. The funds are used to pay rewards to the nodes running
the TSN and to pay fees to the main. When an epoch is created in TSN the bull’s eye for TSN,
a contract is automatically sent to the MTN, and a fee is deducted from the TSNF account and
burned. If there are not enough funds in the TSNF account, TMN rejects the contract.

TGS used in the TSN must be locked in a Tagion Sub Network Account (TSNA) these funds
can only be transferred between other TSNA and to the TSNF. Funds can not be transferred
from TSNF to a TSNA.

The funds in TSNA can be transferred to TGS-bills again via TSNA-contract this contract
can take multiple TSNA as input and will transfer all the funds to bills on the output, all the
input TSNA will be deleted from DART as is the case with TGS-bills.

Basic rules for a Sub-Network

18

§1 TSN can have a different rule set then applies for TMN

§2 No nodes can transfer money out of a TSNF account

§3 An TSNF account is used to pay rewards to the TSN nodes and the burning fees to the TMN

§4 An TSNA account funds can be transferred to a TSNF account

§5 An TSNA account can transfer money to other TSNA accounts. The fees burned is a little
higher than fees for bills.

§6 The rewards in the TSN is paid from the TSNF account because a TSN can not print TGS
as rewards as is the case for TSN.

19

5 Scripting Engine

The scripting engine’s language is called Funnel. It is based on a stack machine, which is a
simple, functional language inspired by the programming language FORTH.
The scripting engine executes at different run levels. The lowest level is full Turing equivalent and
is only able to make conditional forward jumps; it cannot run loops or functions. The scripting
engine is limited by a number of instructions executed, call stack depth, data stack depth and
memory.
The limitation is done to prevent a script running into infinite loops. The transaction script can
use a library of standard function which is stored in the DART, and the fingerprint of the script
which is stored in the Bull’s eye blockchain that is the current state of the script.

Run
level

Description Limitation

0 Consensus script No limits, full Turing equivalent
1 Debug script function

(read-only)
Limit resources, read-only call function to level 0

2 Transaction function Limit resources and call function to levels 0 and 1
3 Transaction script Limit instruction and call function to level 2

Table 7: Runlevels for the Scripting engine

In contrast, to standard FORTH Funnel is a strictly typed language which is supporting the
types shown in table 8.
Converting from one type to another must be explicitly instructed via a type casting function. If
the casting fails, the scripting engine generates an error and the script stops. The scripting engine
stops on overflow/underflow/divide-by-zero errors and if an operator is operating on invalid types.

name Description D-Type
TEXT UTF-8 text string

INTEGER signend 64-bits number long

CARDINAL Unsignend 64-bits number ulong

BIG Unsigend big integer number BigUint

HiBON HiBON Read/Write-only HiBON

DOCUMENT HiBON Read only Document

BIN Byte arrays, used to hold keys and hash value ubyte[]

Table 8: Scripting types supported

Funnel Sample code for a test contract

1 v a r i a b l e t r a n s o b j
2 v a r i a b l e t r a n s s c r i p o b j
3 v a r i a b l e s i g n a t u r e s
4 v a r i a b l e h a s h t r a n s s c r p o b j
5 v a r i a b l e payees
6 v a r i a b l e payers
7 v a r i a b l e no payers

20

8 v a r i a b l e n o s i g n a t u r e s
9 v a r i a b l e s c r i p e n g o b j

10 v a r i a b l e b i l l s
11 v a r i a b l e n o b i l l s
12

13 : l o a d t r a n s a c t i o n o b j e c t
14 t r a n s o b j !
15 t r a n s o b j @ ’ t r a n s a c t i o n s c r i p t i n g o b j e c t ’ doc@
16 t r a n s s c r i p o b j !
17 t r a n s o b j @ ’ s i gna ture s ’ doc@
18 s i g n a t u r e s !
19 t r a n s s c r i p o b j @ hash256
20 h a s h t r a n s s c r p o b j !
21 t r a n s s c r i p o b j @ ’ payees ’ doc@
22 payees !
23 t r a n s s c r i p o b j @ ’ payers ’ doc@
24 payers !
25 payers @ length@ no payers !
26 s i g n a t u r e s @ length@ n o s i g n a t u r e s !
27 ;
28

29 : l o a d s c r i p t i n g e n g i n e o b j e c t
30 s c r i p e n g o b j !
31 s c r i p e n g o b j @ ’ b i l l s ’ doc@
32 b i l l s !
33 b i l l s @ length@ n o b i l l s !
34 s c r i p e n g o b j @ ’ t r a n s a c t i o n o b j e c t ’ doc@
35 l o a d t r a n s a c t i o n o b j e c t
36 ;
37

38 : get payee ownerkey
39 local payee
40 local payees
41 local i ndex
42 i ndex !
43 payees !
44 payees @ index @ doc@ payee !
45 payee @ ’ ownerkey ’ doc@
46 ;

21

6 Transaction Scripts

When the network receives a transaction request, it is added in an epoch and executed by the
scripting engine. A transaction request includes a transaction object which is a data package
in HiBON format. The HiBON object contains input bill numbers and the transaction script
including a list of digital signatures which signs the transaction script object. The signatures
can be verified via the public keys represented in the input bills.

Parameter Description Type Access
$type Set contract type to ’B0’ string ro

$V Value ulong ro

$k Epoch number uint ro

$T Bill type string ro

$Y Doubled hashed Owner key ubyte[] ro

...

Table 9: Standard archived Bill object

Parameter Description Type Access
$in Array of Bill numbers and public keys [] ro

$read Array of Bill numbers and public keys [] ro

$out Array of public key hashes [] ro

$params Parameters used by the script {} ro

$script Transaction script {} ro

Table 10: Transaction scripting object

Parameter Description Type Access
$record Scripting object {} ro

$signs Array of input signatures [] ro

Table 11: Transaction object

Transaction Epoch consensus rules:

1. If one or more script object is found with the same input bill number, the first transaction
object in the epoch is kept in the epoch list. Any other object flows in the list are removed.

Transaction object initial consensus rules:

1. The size of the inputs array in the script record must be one or more.

2. The size of the inputs array and the signature arrays must be the same size.

3. The bill type of the first type input must be a Tagion type.

4. Duplicate bill numbers are not allowed.

22

5. All the inputs must be in the current state of the DART.

If a transaction object violates one of the initial consensus rules, it is handled by a violation
script function.

Transaction scripting execution: Because the epoch list is guaranteed to prevent inputs
with same bill number, a node can choose to execute the scripts in the epoch in parallel.

First execution procedure and rules:

1. The bills within the node’s DART angle are read from the DART.

2. The read bills are gossiped to the network.

3. If the script object has only one input, the script is immediately executed.

4. If all the bills in the inputs are covered in the local DART, the script is executed immedi-
ately.

Second execution procedure and rules:

1. The script is executed if all the inputs are received or read for a transaction object and the
signatures are correct.

2. The script must finish with a burn function which burns the transaction fee.

3. If the sum of all outputs of the bill type Tagions (bill type can be Tagions or external
contracts of, e.g. Euros) is greater than the sum of the input minus the transaction fee,
the first input bill is scheduled to be removed, and the transaction is ignored.

4. If the sum of all outputs of types other than Tagion is greater than the input, the first
input bill is scheduled to be removed, and the transaction is ignored.

DART execution procedure:

1. When all scripts have been executed, the process of updating the DART begins.

2. All inputs of successfully executed scripts must be removed from sections covered by the
node.

3. All outputs of the successfully executed script must be added to the sections covered by
the node.

4. All the Merkle roots within the section angle must be calculated and signed and gossiped
to the network. Note: From this point, the node can start executing the next epoch.

5. When the node has received the majority for all the sections’ Merkle, it calculates the
Bull’s eye of the DART, which is signed and gossiped to the network.

6. When the majority of consistent Bull’s eyes has been received, the node decides that the
DART has been updated and change states. Note: A transaction has been completed at
the new state.

7. If one of the above rules fails, the DART is reverted to the previous state.

Note: When a node receives a transaction object, it can send a request to the DART to
collect the inputs of the script. By doing the execution in parallel, it improves the transaction
time instead of starting to collect inputs when the epoch has been completed.

23

7 Business Model

The business model consists of two parts incentives and fee payments. The incentives are given
to the nodes for their work and fees paid by the users for using the system.

Money printing - incentives New money is added to the system when an epoch has been
completed, and the DART has reached consensus. The newly printed money is rewarded to one
of the active nodes if it has successfully executed the epoch.
The reward winning node is selected via a UDR Lottery, which is seeded from the Bull’s eye
hash of the DART where the epoch was generated.
The amount is calculated by an economic protocol controlled by the economic governance, see
section 1.2.

Money burning - payment When a transaction is performed in the network, more fees are
paid by the user initiating the transaction. The fees depend on storage, transaction amount and
script execution load. The fees paid to the network is burned; thus, the amount is taken out of
the money supply. A storage fee is paid per bytes of the total sum of bytes of all outputs stored
in the DART.
A transaction fee is paid as a fraction of the total Tagion amount of the input of the transaction
script.
The execution fee is calculated per script instructions where each instruction is priced.
If total Tagion amount of output transaction script is less than a specified limit, the whole
amount is burned and the transaction not valid. Fees for decentralised exchange are described
in section 11.

24

8 Parallelism

Transactions with independent bills can run in parallel, enabling scalability and performance.
Independent bills mean that inputs and outputs of transactions are not the same bills. It can
run in parallel because the overall design of the data, DART and the scripting engine makes it
possible.
The scripting engine is an event-driven engine that executes functions in parallel with inputs and
produces outputs locally on each node. Inputs which must be used are read from the DART, and
the outputs are stored in the DART. When the transaction successfully completes, the inputs
are deleted.

The database is distributed thus nodes only maintain and keep a copy of the part of the
database they subscribed to, see section 3. Because transactions’ inputs and outputs are inde-
pendent and each node only executes a part of the transactions, they can be executed in parallel
and the database updated in parallel as well.
It is not the transaction instructions, which are stored in the database, but the actual bills, which
are used as inputs and outputs. Then all nodes do not need to execute all data to verify the
integrity of the database as in typical blockchain structures. The consensus event and consensus
data are thus mere an intermediate calculation, where the output is stored.

25

9 Node Stack

The node stack is implemented in the programming language D with some C libraries for crypto
functions. It is structured, as shown in the figure below.

HRPC (HiBON) Dataformat for communication
NODE

User API - TLS 1.2 P2P Network
Scripting Engine

Consensus mechanism : Hashgraph
Storage : Distributed Database DART

Storage state : Blockchain

Table 12: Tagion Node stack

A Tagion Node is divided into units as shown in fig. 6 and each unit handles a service function
in the following manner:

A smart-contract is sent to the Transaction-service-unit fetching the inputs from the DART
unit and verifying their signatures. The DART-unit connects to other DARTs via the P2P-unit.
The transaction-unit forwards the smart-contract including the inputs to the Coordinator-unit
and this unit adds it to an event that is gossiped to the network via the P2P-unit.
When the Coordinator receives an event with a smart-contract, it is executed via the Scripting-
Engine-unit, and the result of outputs are verified.
When the Coordinator finds an epoch, this epoch is forwarded to the Transcript-service-unit that
evaluates the correct order and request the DART-unit to erase the inputs and add the newly
generated outputs.

CoordinatorTransaction Transcript

P2P

DART

HeartBeat

MonitorScriptingEngineLogger

Smart−contract

Figure 6: The Tagion Node service structure

Each of the services is running as independent tasks and communication between each-other
via commutation channels. The different services modules perform the service as described in
the list below.

26

Coordinator This services manage the hashgraph-consensus and controls other related service for the
node. The Coordinator generates and receives events and relays to the network. This
services also generate the epoch and send the information to the ScriptingEngine services.

Transaction This service receives the incoming transaction script, validate, verifies and fetches the data
from the DART and sends the information to the Coordinator.

DART Services to the Distributed-database.

P2P This service handles the peer-to-peer communication protocol used to communicate be-
tween the nodes

ScriptingEngine Handles the executions of the scripts

Transcript Services the Epoch and orders the script execution.

Logger The service handles the information logging for the different services

Monitor The Monitor service is used to monitor the activities locally.

HeartBeat This services is only used in test-mode. This service enables the nodes to execute sequen-
tially, simplifying network debugging.

27

10 Privacy

The current banking system achieves a level of privacy by keeping key information hidden from
the public. Under this regime, all identities are known by the trusted third party, i.e. the bank.

In the Tagion system, all transactions and bills are public, but physical identities are sepa-
rated from transactions and bills. The system has full transparency regarding how many bills
exist. A public key is bound to a bill and not an account, and the private key is for signing and
spending the bill.

Identies Bills

Private Domain Public Domain

PublicKeysTransactions

Figure 7: Private and Public domain

Tagion bills are not linked in a chain because each time a bill is spent, a transaction is recorded
in the database, deleting the old bill and creating a new one. A full trace of the network will,
however, reveal the inputs and outputs of transactions, thus linking the bills. Over time the bills
split and re-combine as they become part of multiple in and out transactions. Therefore, it is
not feasible to search back through the linking of bills for a pattern, because it is not a 1:1 trace
of bills and would cause an NP (non-polynomial) problem, which cannot be solved in finite time.

28

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Figure 8: A transaction is represent as a hexagon with a flame the small-bank-note with a t
represent bills

A user can determine if the same public key should be the owner on all his/her bills or a
different, derived, public key. They can hold a different public key for each owned bill, and these
keys may not correlate with each other. By using a different public key for each node, a user can
make transactions in full privacy, i.e. anonymously.
A node is a public servant and therefore needs to reveal public information. A node in the Tagion
system needs to use a fixed public key to ensure the governance of the node. The public key is
the identifier for the node that can be perceived as an account, and it is the account for receiving
rewards.

29

11 Decentralised Exchange using Lightning Network

Via a TSN interfacing other alien Distributed Ledger Technology (DLT) for exchanges is possi-
ble. Most of the current DLT’s is based on Prof Of Work (POW) which secures the immutability
of the ledger and has been proven to be very robust. The downside for those types DLT’s is the
long confirmation time.
A suggested solution to decreasing the confirmation time is to use a second layer solution using
a network of payment channels like the Lightning Network (LN).
Tagion Network (TN) and LN support each other to enable a Decentralised Exchange (DEX)
for DLT networks which support full-duplex payment channels, Hashed Time Lock Contract
(HTLC) and Multi Signature (MultSig). The advantage of using the TN as a support system
to store intermediate data for the payment channels is that the LN-nodes can share data even
if some of the LN nodes go offline. In the current LN use in Bitcoin and other similar networks,
the routing between the payment channels is a challenge, one of the reasons for this is that the
routing tables are difficult to share and maintain between the nodes, but because data is stored
in a DART this makes sharing data feasible.
Because funds in alien DLT can be locked via an HTLC, the alien-currency (ALC) the funds
can be swapped with the native tagion-currency in an atomic manner. This feature enables
the Tagion network to support exchange functionality in a decentralised manner providing full
liquidity because all exchange pairs have Tagions as the counterpart.

11.1 Trading flow using Lightning and Tagion Network

The Tagion network can order the bids/asks in a Byzantine Fault Tolerant (BFT) manner, this
means that the network is able to come to a consensus on the order of transaction and this solves
the matching and prices discovery in a fair manner and solver front-running the order-book in a
decentralised manner.

The idea is one STN handles only one trading pair between TGS and ALC. By only using
one pair the matching and routing problem is reduced significantly in comparison to a full multi-
currency-DEX with more than two currencies.
First of all, the price discovery is more straightforward, and the amount of data to process is
much less if only one pair much be matched and discovered. The second advantage of the one
pair DEX is that sub-network only need to handle one alien smart contract format.

11.1.1 Price discovery and matching

The DEX are able to handle two type of orders as shown in table 14 and table 13. The orders
are sent to the TN and at each epoch the trade-order-queue is sorted according to the hashgraph
consensus ordering.

Exchange order pairs

ATO Order to buy TGS for ALC

BTO Order to buy ALC for TGS

The matching-engine will maintain two sales-lists of Ask Trade Orders (ATO) and a Bid
Trade Orders (BTO), those sales-lists are sorted according to the exchange rate with lowest
exchange ratio at to top of the list. A detailed example can be found in appendix E.

30

The ask exchange rate is defined as:

Eask =
Q

P
in unit [ACL/TGS] (8)

The bid exchange rate is defined as:

Ebid =
P

Q
in unit [TGS/ACL] (9)

P is the price in TGS

Q is the price in ACL

The trade-order-queue is maintained with the orders that are not executed. A new trade-
order-queue is generated in each epoch and added in the end of the current trade-order-queue.
The matching executes the first in trade-order-queue, i.e. the oldest order is searched first for a
match.

The ATO and BTO orders in the trade-order-queue are defined as buyers. A match is defined
to be found, when the buyer’s exchange-rate is higher or equal than the seller’s exchange-rate
from the corresponding sales-list. The price of the settlement will be set at seller’s exchange-rate.

• When an ATO buys from BTO-sales-list at Eask,BTO price when:

Eask,ATO ≥ Eask,BTO or the same as QATO

PATO
≥ QBTO

PBTO
.

• When an BTO buys from ATO-sales-list at Ebid,ATO price when:
Ebid,BTO ≥ Ebid,ATO or the same as PBTO

QBTO
≥ PATO

QATO
.

Summarising, a buyer with an ATO-order from the order-queue matches a seller with a BTO-
order from the BTO-sales-list and vice versa. Then the size is calculated, and a trading-contract
with the corresponding pair is generated and stored in the TN.

If the ATO or the BTO has sold the whole size, then the order is removed from the lists.
If an order includes a valid time period of t and if the epoch consensus time is greater than this
valid time period t then the order is removed and not executed.

Parameter Description Type Access
$type Set the contract type to ’ATO’ string ro

P Price unit TGS ulong ro

Q Price unit ACL ulong ro

size Size of ACL ulong ro

lock Random Hash-lock key bin ro

time Valid time period utc ro

Table 13: ATO HiBON to buy TGS for ALC

31

Parameter Description Unit Access
$type Sets the contract type to ’BTO’ string ro

P Price unit TGS ulong ro

Q Price unit ACL ulong ro

size Size og TGS ulong ro

lock Random Hash-lock key bin ro

time Valid time period utc ro

Table 14: BTO HiBON to buy ALC for TGS

11.1.2 Exchange execution rules

Carol

Bob

Dave

Alice

Lightning Network

TN

Figure 9: Tagion Decentralised Exchange based on Lightning Network

In the following example, the execution flow of the DEX is described.

Alice wants to trade TGS for ALC (ATO). It can be done as follows

A.1 Entry: Alice opens an LN channel with Bob.

A.2 Alice requests a trading channel from Bob with a guarantee of ωalice,S in ALC

A.3 Bob locks up a guarantee of an amount τbob,S in TGS which matching Alice’s ωalice,S amount.
Bob creates an HTLC lock it with Rbob and send this information to the TN.

A.4 Alice pays ωalice to the contract lock with Rbob.

32

A.5 Order: Alice sends an order to the TN including an HTLC contract to Bob locked with
Ralice and the amount αalice in ALC. The information includes the bid/ask prices and HTLC
contract which is sent to the TN.
Note: Carol has previously locked funds with Rcalor in TGS to buy ALC

A.6 When the TN discoveries a trading pair matching Alice and Carol the network generated a
TN-HTLC trading contract locked with both Ralice and Rcarol.

A.7 When Bob verifies that Carol has to reveal Rcalor. Bob initials a route between Alice to
Carol according to the trading bill. Bob also makes an HTLC return the rest of Alice funds
locked with Ralice.

A.8 Alice reveals Ralice and the funds can be transferred.

A.9 Exit: Alice can ask Bob to reveal Rbob and exit the trading channel. The locked Bob’s
locked funds are returned, and Alice can claim her funds.

Carol wants to trade ALC for TGS (BTO). It can be done as follows

B.1 Entry: Carol opens an LN channel with Dave.

B.2 Carol requests a trade channel with Dave, both Carol and Dave guarantee of τcarol,S and
τdave,S in TGS and hash-locked with Rcarol in the TN.

B.3 Order: Carol sends an order to Dave via the TN.

B.4 Dave receives a confirmation from the network about the order from Carol.

B.5 Dave and creates an HTLC contract to Carol locked with Rdave at the amount of αcarol,T

in ALC.

B.6 When the TN discoveries a trading pair matching Alice and Carol the network generated a
TN-HTLC trading contract locked with both Ralice and Rcarol.

B.7 Dave reveals the Rdave the Alice can execute the trade.

B.8 Exit: Carol can ask Dave to reveal Rdave and exit the trading channel. The locked Dave’s
and Carol’s locked funds are returned.

33

A2
Request

A4

A2

Rcarol

A7

Request

B1

B2

B5

B6

B4

B8B8

Bob

A1

A3

Locks a guarentee to Rbob

Offer HTLC(Alice)

TN−HTLC(Alice&Carol)

Alice

A1

A5

HLTC(bob)

A8
Ralice

A9

Exit

New Offer

Lightling Channel Initiated

Dave

Trading pair for Carol

Rcarol

Rdave

Offer to Dave

Confirmation

HLTC(dave)

Exit

New Offer

Tagion Network

Trading Contract Executed

Prices discovery

B1

B2

B3

B7

B9

A8 & B8

A6 & B6

Carol

Buying ACL for TGSBuying TGS for ALC

Figure 10: DEX transaction flow

Incentives and Penalty If one or more of the 4 participants (Alice, Bob, Carol and Dave)
fail’s to executed the trade the flowing penalty rules will be performed by the TN consensus.

§1 Alice doesn’t claim the transaction

Incident

• If Alice does not reveal Ralice within the timeout limit.

34

Action

• After a timeout period less than the Alice HLTC time lock.

• The funds will be revoked to Carol.

• The trade is deleted.

• Bob keeps Alice’s stacked fund’s.

• If the price of Alice’s funds is less than Bob’s guaranteed fund’s. Bob gets some of
his fund’s back, which corresponds to the current trading prices.

• The rest of Bob funds is burned.

• If Alice reveals the Ralice after the timeout, Alice losses her funds to Carol.

§2 Bob doesn’t initial the routing

Incident

• If Bob is offline or chose not find establish connection within the a timeout period.

Action

• Bob loss his funds and the trade bill is deleted.

• Carol’s funds is returned.

• Alice will get her funds back after the HTLC time lock runs out.

§3 Carol doesn’t claim the transaction

Incident

• Carol does not reveal the Rcarol within the timeout limit.

Action

• If Bob makes creates a contract which returns Alice’s funds with a time limit Bob
get’s his funds back.

• Carol’s transaction stake is given is burned and the rest of the funds is return to
Carol.

• The transactions bill is deleted.

§4 Dave doesn’t accepts the routing

Incident

• If Dave is offline or chose not find establish connection within the a timeout period.

Action

• After the timeout Carol can reclaim the stack ωcarol and open a new channel with
Eric.

• Dave’s stack ωdave is burned

• Carol can initial the trade by revealing Rcarol.

• The transactions bill is deleted after execution.

35

A HiBON Data format

All data exchanged and stored in the network is structured using a data format called Hash-
invariant Binary Object Notation (HiBON) which inspired by Binary JSON (BSON) but to
compatible with. In HiBON the keys are sorted according to the ordering rules described below
(in D-lang). By ordering the keys, the data is hash invariant for the same collection.

1 @safe
2 bool l e s s t h a n (s t r i n g a , s t r i n g b) pure
3 in {
4 a s s e r t (a . l ength > 0) ;
5 a s s e r t (b . l ength > 0) ;
6 }
7 body {
8 stat ic bool i s i n d e x (s t r i n g a , out u int r e s u l t) pure {
9 import std . conv : to ;

10 enum MAX UINT SIZE=to ! s t r i n g (u int . max) . l ength ;
11 i f (a . l ength <= MAX UINT SIZE) {
12 i f (a [0] == ’ 0 ’) {
13 return fa l se ;
14 }
15 f o r each (c ; a [1 . . $]) {
16 i f ((c < ’ 0 ’) | | (c > ’ 9 ’)) {
17 return fa l se ;
18 }
19 }
20 immutable number=a . to ! ulong ;
21 i f (number <= uint . max) {
22 r e s u l t = cas t (u int) number ;
23 return true ;
24 }
25 }
26 return fa l se ;
27 }
28 uint a index ;
29 uint b index ;
30 i f (i s i n d e x (a , a index) && i s i n d e x (b , b index)) {
31 return a index < b index ;
32 }
33 return a < b ;
34 }

Only printable ASCII keys are allowed to be used as keys in the HiBON; this means no
control characters or special characters allowed. The key is validated accordingly to the function
described below.

1 @safe bool i s k e y v a l i d (s t r i n g a) pure nothrow {
2 enum : char {
3 SPACE = 0x20 ,
4 DEL = 0x7F ,

i

5 DOUBLE QUOTE = 34 ,
6 QUOTE = 39 ,
7 BACK QUOTE = 0x60
8 }
9 i f (a . l ength > 0) {

10 f o r each (c ; a) {
11 // Chars between SPACE and DEL i s v a l i d
12 // excep t f o r ” ’ ‘ i s not v a l i d
13 i f ((c <= SPACE) | | (c >= DEL) | |
14 (c == DOUBLE QUOTE) | | (c == QUOTE) | |
15 (c == BACK QUOTE)) {
16 return fa l se ;
17 }
18 }
19 return true ;
20 }
21 return fa l se ;
22 }

ii

Data type Code D-Type Description
float64 0x01 double 64bit floating point
string 0x02 string UTF-8 string
Embedded document 0x03 {} HiBON object
Embedded array 0x04 [] HiBON Array object (Only index numbers allowed)
Boolean 0x08 bool Boolean false=0, true=1
64bits UTC Time 0x09 utc UTC datetime 64bits signed integer
int32 number 0x10 int 32bit usigned number
int64 number 0x12 long 64bits signed integer
float128 0x13 decimal 128bits floating point
Big integer 0x18 bigint Signed big integer
uint32 0x20 uint 32bit unsigned number
float32 0x21 float 32bit floating point
uint64 0x22 ulong 64bit unsigned number
Big integer 0x28 ubigint Unsigned big integer
Native Document 0x43 Document Reserved for internal use only
Defines Array 0x80 void Reserved type for internal use only
Array of float64 0x81 double[] Array of unsigned 64bits integer (size is multiple of

8bytes)
Binary string 0x85 ubyte[] Array of bytes (size is multiple of 1bytes)
Array of int32 0x90 int[] Array of 32bits signed integers (size is multiple of

4bytes)
Array of int64 0x92 long[] Array of 64bits signed integer (size is multiple of

8bytes)
Array of int32 0x90 int[] Array of 32bits integer (size is multiple of 4bytes)
Array of uint64 0x92 long[] Array of 64bits integer (size is multiple of 8bytes)
Array of float128 0x93 decimal[] Array of 128bits floating point (size is multiple of

16bytes)
Array of uint32 0xA0 uint[] Array of unsigned 32bits integer (size is multiple of

4bytes)
Array of float32 0xA1 float[] Array of 32bits floating point (size is multiple of

4bytes)
Array of int64 0xA2 ulong[] Array of unsigned 64bits integer (size is multiple of

8bytes)
Defines string arrays 0x83 string[] Reserved type for internal use only
Defines Document ar-
rays

0xC3 Document[] Reserved type for internal use only

Defines HiBON arrays 0x82 HiBON[] Reserved type for internal use only

Table 15: HiBON Basic data-types

Any data types which are not defined in table 15 are illegal and must be rejected by the
network. The types use in table is mostly the types used in D except of a few as {} and [].

A.1 HRPC – HiBON Remote Procedure Call

HRPC works like JSON-RPC just with signed binary data, the above-defined HiBON format. It
means the data is hash-invariant enabling hash- and signature functions to be executed fast and

iii

non-ambiguous.

Parameter Description Type Access
$type Set contract type to ’HRPC’ string ro

$pkey Public key bin ro

$sign Signature of $msg bin ro

$msg Message object table 17, table 18, table 19 {} ro

Table 16: HRPC format

Parameter Description Type Access
$id Message id uint ro

$method Name of remote call function string ro

$params Params for the $method function (optional) {} ro

Table 17: HRPC method message object

Parameter Description Type Access
$id Message id uint ro

$result Result of the $method call {} ro

Table 18: HRPC success message object

Parameter Description Type Access
$id Message id string ro

$msg Error object table 20 {} ro

Table 19: HPPC error response object

Parameter Description Type Access
$code Set contract type to ’HRPC’ uint ro

$msg Error message string ro

$data Data object (optional) [] ro

Table 20: HRPC error object

iv

B Crypto “Bank” bill

The bill has a value V , public/private key (y, x) and the bank bill number B, which is the hash
of the bill.
V can have the value of a natural number: V ∈ N
This is a newly printed bill:

Yalice = H(Lk+1 ‖ yalice) (10)

Bk+1 = H(V ‖ Lk+1 ‖ tk+1 ‖ T ‖ Yalice) (11)

(H is a hash function, is the hash of the previous confirmed Bull’s eye, is the consensus
timestamp of the current Epoch, is the epoch number and T is the contact type)

The total value of all bills of type T must be accounted for.

Vtotal,k+1 = Vtotal,k+1 + Vk (12)

Simple transaction Ownership of the bill can be transferred to Bob, if:

• Bob reveals his public key to Alice

• Alice generates a new bill and signs it with her private key

Because of the network fee, the value will be reduced by ∆V .

Vk+1 = Vk −∆V (13)

If Vk+1 is negative or zero, the transaction is eliminated and will not generate a new bill.

Vtotal,k+1 =

{
Vtotal,k −∆V if (Vk −∆V ≥ 0)

Vtotal,k − Vk otherwise
(14)

Resulting in:
Ybob = H(Bk ‖ ybob)
Bk+1 = H(V ‖ Bk ‖ tk ‖ k ‖ T ‖ Ybob)

(15)

The new bill is now written to the DART with key Bk+1:

Vk+1, Bk, tk, k, T, Ybob

The old bill Bk is removed from the DART.

The Split of a crypto bill
A bill can be split into a number of other bills if the combined value of the new nodes matches
the original:

Vk =

[
I−1∑
i=0

Vk+1,i

]
+ ∆V (16)

Each new bill is generated as:

Yk+1,i = H(Bk ‖ yk+1,i)

Bk+1,i = H(Vk+1 ‖ Bk ‖ tk ‖ k ‖ T ‖ Yk+1), yk+1,i 6= yk+1,j for (i 6= j)
(17)

v

All new bills marked Bk+1 are stored in the DART as before, and the old bills are removed.
Join or collect bills into one bill.
A number of bills can be collated into one bill if the value adds up as follows:

Va =

[
I−1∑
i=0

Vb,i

]
+ ∆V (18)

The new common bill number is generated by hashing a sorted list of the joined bill numbers.

B′k = H(Bk,0 ‖ Bk,1... ‖ Bk,I−1) (19)

The new bill number will be generated:

Y ′k+1 = H(B′k ‖ yk+1)

Bk+1 = H(Va ‖ B′k ‖ tk ‖ k ‖ T ‖ Y ′k+1)
(20)

These new consolidated bills are stored in the DART.

vi

C Network

The following steps are executed in the network for a standard transaction:

1. The transaction object is sent to one of the active nodes (an inactive node should relay the
transaction object to an active node).

2. When a node receives a transaction object, its format, and signatures of all the inputs are
checked.

3. If the transaction object is valid, it is added to the payload of an event.

4. The event is gossiped to the network.

5. The payload is put into an epoch list in order.

6. The epoch list is processed in the epoch order.

7. All inputs to the transaction are collected from the DART database.

8. The transaction script is executed when all inputs are read from the DART.

9. The output of the transaction scripts is gossiped to the network.

10. When the network reaches consensus on all outputs of the transactions, the DART is
updated.

11. The new Merkle root (Bull’s eye) of the DART is calculated, and the Bull’s eye is gossiped
to the network.

12. When the majority of the nodes reach consensus on the Bull’s eye, it is added to the DART
blockchain. The transaction is now approved.

vii

D Network Security

Network attack surface
In the following, the probability of an evil attack on the network is estimated via a simple

model.
The network participants are given by the flowing parameters.

M is the total number of nodes which are available for the network (This includes active and
passive nodes, not prospect nodes).

N is the number of active nodes running the networks.

E is the number of nodes controlled by the evil attacker.

nE is the number of evil nodes among the N active nodes.

The attack scenario is divided into two categories. The first category prevents the network
from reaching consensus, and in the second category, the attacker is able to take over the network
and decide the faith what is going which transactions going it to a block.

First category:
If the evil attacker wants to prevent the networks of reaching consensus, the evil attacker needs

more than 1/3 of the active nodes.
nE
N

>
1

3
(21)

Second category:
If the evil attacker wants to take over the network, the attacker needs more than 2/3 of the

active nodes.
nE
N

>
2

3
(22)

The calculated scenario is based on all the N nodes is changed at every epoch. In the real
network, this is not the case; only one node is swapped out and in at every 100 epoch. Thus
the probability of an evil takeover is significantly lower than this calculation. The model is
chosen because it is easy to express mathematically. The active nodes are selected randomly
from M , and the probability that the evil attacker controls the first selected node is: Definition
of permutation formula:

P (n, r) =
n!

(n− r)!
(23)

Definition of combination formula:

C(n, r) =
n!

(n− r)! · r!
=
P (n, r)

r!
(24)

The probability of an evil node is selected is:

pE0
=

E

M
(25)

The probability of selecting an evil node after selected an evil node at the nth time is:

pEn
=

E − n
M − n

(26)

viii

The probability of constructing an evil network
In this section, the probability of constructing an evil network is calculated.
The network is randomly constructed by selecting N nodes out of M nodes where E nodes are
evil.
A network is defined to be evil if the network contains nE or more evil nodes out of the N active
nodes according to formula first and second category formula above.

The probability that nE nodes out of N nodes are:

pEn
=

nE−1∏
i=0

pEi
·

NE∏
i=nE

(1− pEi
) · C(N,nE)

∣∣∣∣∣
NE=min(E,N)

(27)

If M � nE and E � nE the probability can be approximated to:

pnE
≈ pnE

E0
· (1− pE0)N−nE · C(N,nE) for

E

M
≈ E − nE
M − nE

(28)

The probability that nE nodes or more are:

pn>nE
=
∑
i=NE

nEpi · C(N, i)

∣∣∣∣∣
NE=min(E,N)

(29)

Example if N = 100 and M = 1000 and the attacker has E nodes, the probability that the
attacker can prevent the network of reaching consensus is:

M = 200 M = 1000 M = 10000

N = 60 N = 100 N = 100

E = 60 E = 100 E = 500

nE = 21 nE = 34 nE = 34

pn≥20 = 0.199261 pn≥34 = 1.62609 · 10−12 pn≥34 = 5.24507 · 10−20

For an attacker to take over the network:

M = 200 M = 1000 M = 10000

N = 60 N = 100 N = 100

E = 60 E = 100 E = 500

nE = 41 nE = 67 nE = 67

pn≥41 = 4.2687 · 10−14 pn≥67 = 9.34035 · 10−54 pn≥67 = 5.68532 · 10−64

If we have an epoch time of 10 seconds and the probability is 10−53 then the evil attacker
can take over the network every 1046 years or around 1036 the current age of the universe.

Note. For a very large number of M and N the probability can be expressed as a logarithm
formula to prevent numerical overflow. Combination expressed as a logarithm formula:

Φ(n, r) =

n∑
k=r+1

ln(k)−
r∑

k=1

ln(k)

C(n, r) = eΦ(n,r)

(30)

ix

The probability expresses as a logarithm:

ΠEn
=

(
nE−1∑
i=0

ln(pEi
)−

NE∑
i=nE

ln(1− pEi
)

)∣∣∣∣∣
NE=min(E,N)

pEn = e(ΠEn+Φ(N,nE))

(31)

If M � nE and E � nE the probability can be approximated to:

pEn ≈ e(nE ·ln(pE0
)−(NE−nE)·(1−ln(PE0

)+Φ(N,nE)))

≈ e((2·nE−NE)·ln(pE0
)+nE−NE+Φ(N,nE)) for

E

M
≈ E − nE
M − nE

(32)

Security conclusion
By having a volume of, e.g. 1000 nodes and 100 active nodes, which could be a possible

amount for a network or shard, then the probability is so low that it will probably never occur
in practice. Thus, the actual security is that the nodes are decentralised. Therefore, the node
governance protocol is the actual security mechanism, because it regulates the uptake of nodes
aiming for it to be democratic, meaning both decentralised and one physical person only having
one node.

x

E DEX Trading Example

An example of the DEX matching and prices-discovery algorithm describe in section 11 is shown
in the following tables. The trading-order-queue in table 21 and the two sorted sales list are
generated and shown in table 22 and table 23.

No Type Size P Q Eask Ebid Bought Sold Id
0 ATO 83TGS 147 10 0.0680 14.7000
1 ATO 6TGS 138 12 0.0870 11.5000
2 BTO 785ACL 116 10 0.0862 11.6000
3 ATO 79TGS 149 10 0.0671 14.9000
4 ATO 4TGS 113 10 0.0885 11.3000
5 BTO 217ACL 145 11 0.0759 13.1818
6 BTO 936ACL 115 13 0.1130 8.8462
7 BTO 205ACL 145 11 0.0759 13.1818
8 BTO 949ACL 146 10 0.0685 14.6000
9 BTO 888ACL 117 10 0.0855 11.7000

10 BTO 587ACL 112 10 0.0893 11.2000
11 BTO 314ACL 126 13 0.1032 9.6923
12 BTO 503ACL 118 12 0.1017 9.8333
13 ATO 72TGS 106 12 0.1132 8.8333
14 ATO 57TGS 108 13 0.1204 8.3077
15 BTO 341ACL 131 12 0.0916 10.9167
16 ATO 15TGS 127 10 0.0787 12.7000
17 ATO 43TGS 111 11 0.0991 10.0909
18 BTO 85ACL 136 12 0.0882 11.3333
19 ATO 29TGS 144 10 0.0694 14.4000
20 ATO 63TGS 144 14 0.0972 10.2857
21 BTO 716ACL 134 11 0.0821 12.1818
22 ATO 42TGS 139 12 0.0863 11.5833
23 ATO 37TGS 114 13 0.1140 8.7692
24 ATO 45TGS 136 10 0.0735 13.6000
25 ATO 44TGS 131 12 0.0916 10.9167
26 BTO 87ACL 134 10 0.0746 13.4000
27 BTO 739ACL 146 13 0.0890 11.2308
28 ATO 16TGS 138 14 0.1014 9.8571
29 ATO 42TGS 104 10 0.0962 10.4000
30 ATO 79TGS 101 12 0.1188 8.4167
31 BTO 725ACL 117 13 0.1111 9.0000
32 ATO 3TGS 144 13 0.0903 11.0769
33 BTO 226ACL 144 12 0.0833 12.0000
34 ATO 30TGS 140 13 0.0929 10.7692
35 BTO 526ACL 131 14 0.1069 9.3571

Table 21: DEX Trading-order-queue

xi

No Type Size P Q Eask Ebid Bought Sold Id
14 ATO 57TGS 108 13 0.1204 8.3077
30 ATO 79TGS 101 12 0.1188 8.4167
23 ATO 37TGS 114 13 0.1140 8.7692
13 ATO 72TGS 106 12 0.1132 8.8333
28 ATO 16TGS 138 14 0.1014 9.8571
17 ATO 43TGS 111 11 0.0991 10.0909
20 ATO 63TGS 144 14 0.0972 10.2857
29 ATO 42TGS 104 10 0.0962 10.4000
34 ATO 30TGS 140 13 0.0929 10.7692
25 ATO 44TGS 131 12 0.0916 10.9167
32 ATO 3TGS 144 13 0.0903 11.0769
4 ATO 4TGS 113 10 0.0885 11.3000
1 ATO 6TGS 138 12 0.0870 11.5000

22 ATO 42TGS 139 12 0.0863 11.5833
16 ATO 15TGS 127 10 0.0787 12.7000
24 ATO 45TGS 136 10 0.0735 13.6000
19 ATO 29TGS 144 10 0.0694 14.4000
0 ATO 83TGS 147 10 0.0680 14.7000
3 ATO 79TGS 149 10 0.0671 14.9000

Table 22: Sort list of ATO or the ask-sales list

No Type Size P Q Eask Ebid Bought Sold Id
8 BTO 949ACL 146 10 0.0685 14.6000

26 BTO 87ACL 134 10 0.0746 13.4000
7 BTO 205ACL 145 11 0.0759 13.1818
5 BTO 217ACL 145 11 0.0759 13.1818

21 BTO 716ACL 134 11 0.0821 12.1818
33 BTO 226ACL 144 12 0.0833 12.0000
9 BTO 888ACL 117 10 0.0855 11.7000
2 BTO 785ACL 116 10 0.0862 11.6000

18 BTO 85ACL 136 12 0.0882 11.3333
27 BTO 739ACL 146 13 0.0890 11.2308
10 BTO 587ACL 112 10 0.0893 11.2000
15 BTO 341ACL 131 12 0.0916 10.9167
12 BTO 503ACL 118 12 0.1017 9.8333
11 BTO 314ACL 126 13 0.1032 9.6923
35 BTO 526ACL 131 14 0.1069 9.3571
31 BTO 725ACL 117 13 0.1111 9.0000
6 BTO 936ACL 115 13 0.1130 8.8462

Table 23: Sort list of BTO or the bid-sales list

xii

E.1 DEX After the Trading Match

The trade is executed from first order in the queue which is the top of the table 21 and the
matching pairs shown in table 24. A BTO order from the table 21 is search in table 22 to see
if Ebid,BTO ≥ Ebid,ATO and if the order is a ATO the table 23 is searched and if Eask,ATO ≥
Eask,BTO a match is found. The executed trading-orders is shown in table 25 and the order which
remains are shown in table 28. The parameter Id shown in the tables, represents the execution
order and matching Id of the trading pairs and No is the priority order in the trading-order-
queue.

Buyer → Seller No → No Ebuyer Eseller Bought Sold Id
ATO→BTO 1→8 0.0870 0.0685 6.00TGS 87.60ACL 1
BTO→ATO 2→14 11.6000 8.3077 473.54ACL 57.00TGS 2
ATO→BTO 4→26 0.0885 0.0746 4.00TGS 53.60ACL 3
BTO→ATO 5→30 13.1818 8.4167 217.00ACL 25.78TGS 4
BTO→ATO 6→23 8.8462 8.7692 324.46ACL 37.00TGS 5
BTO→ATO 7→13 13.1818 8.8333 205.00ACL 23.21TGS 6
BTO→ATO 9→28 11.7000 9.8571 157.71ACL 16.00TGS 7
BTO→ATO 10→17 11.2000 10.0909 433.91ACL 43.00TGS 8
BTO→ATO 15→20 10.9167 10.2857 341.00ACL 33.15TGS 9
BTO→ATO 18→29 11.3333 10.4000 85.00ACL 8.17TGS 10
BTO→ATO 21→34 12.1818 10.7692 323.08ACL 30.00TGS 11
ATO→BTO 22→33 0.0863 0.0833 18.83TGS 226.00ACL 12
ATO→BTO 25→27 0.0916 0.0890 44.00TGS 494.15ACL 13

Table 24: List of the matching pairs

xiii

No Type Size P Q Eask Ebid Bought Sold Id
1 ATO 6TGS 138 12 0.0870 11.5000 6.00TGS 1
2 BTO 785ACL 116 10 0.0862 11.6000 473.54ACL 2
4 ATO 4TGS 113 10 0.0885 11.3000 4.00TGS 3
5 BTO 217ACL 145 11 0.0759 13.1818 217.00ACL 4
6 BTO 936ACL 115 13 0.1130 8.8462 324.46ACL 5
7 BTO 205ACL 145 11 0.0759 13.1818 205.00ACL 6
8 BTO 949ACL 146 10 0.0685 14.6000 87.60ACL 1
9 BTO 888ACL 117 10 0.0855 11.7000 157.71ACL 7

10 BTO 587ACL 112 10 0.0893 11.2000 433.91ACL 8
13 ATO 72TGS 106 12 0.1132 8.8333 23.21TGS 6
14 ATO 57TGS 108 13 0.1204 8.3077 57.00TGS 2
15 BTO 341ACL 131 12 0.0916 10.9167 341.00ACL 9
17 ATO 43TGS 111 11 0.0991 10.0909 43.00TGS 8
18 BTO 85ACL 136 12 0.0882 11.3333 85.00ACL 10
20 ATO 63TGS 144 14 0.0972 10.2857 33.15TGS 9
21 BTO 716ACL 134 11 0.0821 12.1818 323.08ACL 11
22 ATO 42TGS 139 12 0.0863 11.5833 18.83TGS 12
23 ATO 37TGS 114 13 0.1140 8.7692 37.00TGS 5
25 ATO 44TGS 131 12 0.0916 10.9167 44.00TGS 13
26 BTO 87ACL 134 10 0.0746 13.4000 53.60ACL 3
27 BTO 739ACL 146 13 0.0890 11.2308 494.15ACL 13
28 ATO 16TGS 138 14 0.1014 9.8571 16.00TGS 7
29 ATO 42TGS 104 10 0.0962 10.4000 8.17TGS 10
30 ATO 79TGS 101 12 0.1188 8.4167 25.78TGS 4
33 BTO 226ACL 144 12 0.0833 12.0000 226.00ACL 12
34 ATO 30TGS 140 13 0.0929 10.7692 30.00TGS 11

Table 25: Orders which are matched and executed

xiv

No Type Size P Q Eask Ebid Bought Sold Id
14 ATO 57TGS 108 13 0.1204 8.3077 57.00TGS 2
30 ATO 79TGS 101 12 0.1188 8.4167 25.78TGS 4
23 ATO 37TGS 114 13 0.1140 8.7692 37.00TGS 5
13 ATO 72TGS 106 12 0.1132 8.8333 23.21TGS 6
28 ATO 16TGS 138 14 0.1014 9.8571 16.00TGS 7
17 ATO 43TGS 111 11 0.0991 10.0909 43.00TGS 8
20 ATO 63TGS 144 14 0.0972 10.2857 33.15TGS 9
29 ATO 42TGS 104 10 0.0962 10.4000 8.17TGS 10
34 ATO 30TGS 140 13 0.0929 10.7692 30.00TGS 11
25 ATO 44TGS 131 12 0.0916 10.9167 44.00TGS 13
4 ATO 4TGS 113 10 0.0885 11.3000 4.00TGS 3
1 ATO 6TGS 138 12 0.0870 11.5000 6.00TGS 1

22 ATO 42TGS 139 12 0.0863 11.5833 18.83TGS 12

Table 26: Sort list of ATO which are executed

No Type Size P Q Eask Ebid Bought Sold Id
8 BTO 949ACL 146 10 0.0685 14.6000 87.60ACL 1

26 BTO 87ACL 134 10 0.0746 13.4000 53.60ACL 3
7 BTO 205ACL 145 11 0.0759 13.1818 205.00ACL 6
5 BTO 217ACL 145 11 0.0759 13.1818 217.00ACL 4

21 BTO 716ACL 134 11 0.0821 12.1818 323.08ACL 11
33 BTO 226ACL 144 12 0.0833 12.0000 226.00ACL 12
9 BTO 888ACL 117 10 0.0855 11.7000 157.71ACL 7
2 BTO 785ACL 116 10 0.0862 11.6000 473.54ACL 2

18 BTO 85ACL 136 12 0.0882 11.3333 85.00ACL 10
27 BTO 739ACL 146 13 0.0890 11.2308 494.15ACL 13
10 BTO 587ACL 112 10 0.0893 11.2000 433.91ACL 8
15 BTO 341ACL 131 12 0.0916 10.9167 341.00ACL 9
6 BTO 936ACL 115 13 0.1130 8.8462 324.46ACL 5

Table 27: Sort list of BTO which are executed

xv

No Type Size P Q Eask Ebid Bought Sold Id
0 ATO 83TGS 147 10 0.0680 14.7000
3 ATO 79TGS 149 10 0.0671 14.9000

11 BTO 314ACL 126 13 0.1032 9.6923
12 BTO 503ACL 118 12 0.1017 9.8333
16 ATO 15TGS 127 10 0.0787 12.7000
19 ATO 29TGS 144 10 0.0694 14.4000
24 ATO 45TGS 136 10 0.0735 13.6000
31 BTO 725ACL 117 13 0.1111 9.0000
32 ATO 3TGS 144 13 0.0903 11.0769
35 BTO 526ACL 131 14 0.1069 9.3571

Table 28: DEX Trading order queue of the orders which are not yet executed

No Type Size P Q Eask Ebid Bought Sold Id
32 ATO 3TGS 144 13 0.0903 11.0769
16 ATO 15TGS 127 10 0.0787 12.7000
24 ATO 45TGS 136 10 0.0735 13.6000
19 ATO 29TGS 144 10 0.0694 14.4000
0 ATO 83TGS 147 10 0.0680 14.7000
3 ATO 79TGS 149 10 0.0671 14.9000

Table 29: Sort list of ATO which are not yet executed

No Type Size P Q Eask Ebid Bought Sold Id
12 BTO 503ACL 118 12 0.1017 9.8333
11 BTO 314ACL 126 13 0.1032 9.6923
35 BTO 526ACL 131 14 0.1069 9.3571
31 BTO 725ACL 117 13 0.1111 9.0000

Table 30: Sort list of BTO which are not yet executed

xvi

F Gene Distance

Each node has a gene string, which is used to calculate the gene-score of the node. This node-gene
is represented as a binary string of bits.

γ = [b0, b1..bN−1] bi ∈ B (33)

The gene distance between two nodes A and B is calculated as the number of counted ’1’ of
the exclusive-or between the to bits vectors.

Λ(γA, γB) =

N−1∑
i=0

(γA,i ⊗ γB,i) (34)

The total gene score form a node A to all active nodes can be calculated as:

Λnetwork =
1

M
·
M−1∑
j=0

Λ(γj , γA) (35)

Where M is the number of active nodes in the network.
The gene of the active node is mutated for each epoch via a UDR random number. A random

bit select from the N bits is randomly set to ’0’ or ’1’.
Over time the gene-score between the active nodes are reduced, and this will statistical reduces

the score compared to the none active nodes; thereby increasing the probability of none-active
to be swapped in as active nodes.

xvii

G Mutation rules

In this sections the algorithm of bill gene mutations is described.

G.1 Mutation base

A mutation base vector R is generated as an UDR bit-vector

R = [µ0, µ1..µN−1] µi ∈ B (36)

G.2 Population gene mutation

From a number M of gene vectors Tj a population mutation gene B is defined.

B = [β0, β1..βN−1] βi ∈ B (37)

For all 1’s for each vector is summed, as follows.

si =

M−1∑
j=0

tj,i, tj,i ∈ B (38)

Where si is the sums of 1’s for bit i for all vectors Tj and tj,i is the bits in the Tj vectors.
The bits in the population gene is defined as follows.

βi =

1 if (2 · si > M)

µi if (2 · si = M)

0 otherwise

(39)

Where mui is the mutation base for the population M .

G.3 Production gene mutation

From a gene pair a and b the production gene is defined as:

γi =

{
ai if (µi = 0)

bi otherwise
(40)

And µi is the mutation base of the production mutation.

G.4 Transaction mutation

The bill mutation rules is as follows.

B.1 A population gene B is calculated for all inputs

B.2 The genes of the outputs is production mutated with the epoch gene

The epoch gene is generated for all the outputs as follows:

P.1 A population gene P is calculated for all the transaction output genes

P.2 The previous epoch gene E is produced with P to generate a new E gene

The transaction rewards lottery is selected based on the gene distance between the output
gene and the current epoch gene.

xviii

H Node Selection

Some basic ideas for random node selection.
The nodes is selected random via a UDR and the function for this selection the is based Fermi

Dirac distribution function is used.

f(E) =
1

1 + e(E−EF)/kT
(41)

Where E is the potential energy and EF is Fermi energy level kT is a boltzmann’s constant and
temperature.

The potential energy for different parameter for a node such as Trust, Age and the distance
to the last epoch where the node was active.
To calculated the potential energy level for a parameter the equation for the potential energy for
a spring is used.

ES =
1

2
kS · x2 (42)

So the total potential energy for a node is:

Ei =
1

2
(kT · x2

T + kA · x2
A + kE · (xE − xC)2) (43)

The kT spring constant and the xT value for the trust.
The kA spring constant and the xA value for age.
The kE spring constant for an epoch and the last epoch xA and xC is the current epoch number.

An active node is randomly selected in the following manner a random node i is selected
between all registered nodes if f(Ei) > rudr. The value rudr is a UDR value between 0 and 1.

xix

I No central key-pair re-generation

Idea to recover key-pair from lost password. When key-pair is generated the first time the key
owner will answer a number of questions. If we have N number of questions qk and related to
ak answers. A seed hash R of a random number is generated which will be used as the seed key
for the private key. A new seed Ya can be generated 1 from R and a list of answers hashes of
answers.

Ai = H(H(ai)||H(qi))

Ya = R⊗A0 ⊗ ... An

(44)

The seed hash R can be regenerated if all the values of A is available.

R = Ya ⊗A0 ⊗ ... An (45)

If the password recovery values Y and the questions qk is stored so that the owner can access
those value, which is now named recovery service. The owner creates a passphrase p for this a
new a seed phrase is generated.

Pu = H(U ‖ H(p))

Yu = R⊗ Pu ⊗Du

R = Yu ⊗ Pu ⊗Du

(46)

To obfuscate the passphrase a hash U of a random number and a device seed Du stored on
the local device. This will scramble a simple password and the value Yu is stored in the recovery
service.

If the key-pair owner forgets the password p then the owner can request the questions qk from
the recovery service and generated the value A and drive the value R. This can be done without
been connected to the server.

To validate that the R is correct a hash S of R are is stored on the recovery server.

S = H(R) (47)

A set of questions can be generated to together with a set of answers and a list of corresponding
seed Y can be generated. This way the owner only need to answer M out of N questions and by
comparing the hash of R the with the compilation of A and Y values the right combination can
be found.

The number of Y values need is:

NY = (M −N) ·N + 1 (48)

Ex. If M = 10 and N = 5 will result in a NY of 26.

Of cause it’s not recommend to have a high ration between M and N because this can lead
to high probability of guessing R.

1The operator ⊗ represents bit exclusive or operator

xx

List of Tables

1 Overview of the three main governance types for the system: Node, Economic and
System Upgrade Governance. 1

2 The actors in the Tagion Network. 2
3 Variables and scoring rules for the reputational scoring model 3
4 NCL Network Name Card . 17
5 NCR Network Name Record . 18
6 NNR Network Node Record . 18
7 Runlevels for the Scripting engine . 20
8 Scripting types supported . 20
9 Standard archived Bill object . 22
10 Transaction scripting object . 22
11 Transaction object . 22
12 Tagion Node stack . 26
13 ATO HiBON to buy TGS for ALC . 31
14 BTO HiBON to buy ALC for TGS . 32
15 HiBON Basic data-types . iii
16 HRPC format . iv
17 HRPC method message object . iv
18 HRPC success message object . iv
19 HPPC error response object . iv
20 HRPC error object . iv
21 DEX Trading-order-queue . xi
22 Sort list of ATO or the ask-sales list . xii
23 Sort list of BTO or the bid-sales list . xii
24 List of the matching pairs . xiii
25 Orders which are matched and executed . xiv
26 Sort list of ATO which are executed . xv
27 Sort list of BTO which are executed . xv
28 DEX Trading order queue of the orders which are not yet executed xvi
29 Sort list of ATO which are not yet executed . xvi
30 Sort list of BTO which are not yet executed . xvi

xxi

List of Figures

1 Governance Model with actors, boundaries and variables in the Tagion system.
The green triangle indicates an increase for the actor, the red triangle a decrease
and the yellow an increase after an action i.e. a mating transaction. 4

2 Hashgraph with parameter Ω . 11
3 Events and relations . 13
4 The structure of the DART database . 14
5 The data structural layout of DART database . 15
6 The Tagion Node service structure . 26
7 Private and Public domain . 28
8 A transaction is represent as a hexagon with a flame the small-bank-note with a

t represent bills . 29
9 Tagion Decentralised Exchange based on Lightning Network 32
10 DEX transaction flow . 34

xxii

List of Abbreviations

ALC alien-currency

at active time

ATO Ask Trade Orders

BFT Byzantine Fault Tolerant

BSON Binary JSON

BTO Bid Trade Orders

cl contribution loyalty

DART Distributed Archive of Random Transactions

DEX Decentralised Exchange

DHT Distribute Hash Tabel

DLT Distributed Ledger Technology

gs Gene score

HiBON Hash-invariant Binary Object Notation

HTLC Hashed Time Lock Contract

LN Lightning Network

MultSig Multi Signature

NCL Name Card Label

NCR Name Card Record

NNC Network Name Card

NNR Network Node Record

no node age

PIA Parameter Indexed Archive

POW Prof Of Work

SMT Sparse Merkle Tree

TMN Tagion Main Network

TN Tagion Network

TSN Tagion Sub Network

TSNA Tagion Sub Network Account

TSNF Tagion Sub Network Funds

UDR Unpredictable Deterministic Random

xxiii

References

[1] LEEMON BAIRD. “THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM: FAIR,
FAST, BYZANTINE FAULT TOLERANCE”. In: (). Accessed: Swirlds web side.

[2] Allen Christopher. “A Revised ”Ostrom’s Design Principles for Collective Governance of the
Commons or How to Avoid the Tragedy of the Commons within Self-Organizing Systems”.
In: (). Accessed: 2019-09-18.

[3] The Editors of Encyclopaedia Britannica. “Monetarism, Economics”. In: (). Accessed: 2018-
03-12. url: https://www.britannica.com/topic/monetarism.

[4] Milton Friedman. “The Counter-Revolution in Monetary Theory”. In: IEA Occasional Paper
33 (1970). url: https://miltonfriedman.hoover.org/friedman_images/Collections/
2016c21/IEA_1970.pdf.

[5] E. Ostrom, R. Gardner, and J. Walker. Rules, games, and common-pool resources. University
of Michigan Press, 2006.

[6] Elinor Ostrom. “Beyond Markets and States: Polycentric Governance of Complex Economic
Systems”. In: American Economic Review 100.3 (June 2010), pp. 641–72. doi: 10.1257/
aer.100.3.641. url: http://www.aeaweb.org/articles?id=10.1257/aer.100.3.641.

[7] Prize Lecture: Beyond Markets and States: Polycentric Governance of Complex Economic
Systems. Accessed: 2018-07-02. url: https://www.nobelprize.org/prizes/economic-
sciences/2009/ostrom/lecture/.

[8] Elinor Ostrom. “Sustainable Social-Ecological Systems: An Impossibility?” In: (2007). doi:
10.2139/ssrn.997834. url: https://ssrn.com/abstract=997834.

xxiv

https://www.britannica.com/topic/monetarism
https://miltonfriedman.hoover.org/friedman_images/Collections/2016c21/IEA_1970.pdf
https://miltonfriedman.hoover.org/friedman_images/Collections/2016c21/IEA_1970.pdf
https://doi.org/10.1257/aer.100.3.641
https://doi.org/10.1257/aer.100.3.641
http://www.aeaweb.org/articles?id=10.1257/aer.100.3.641
https://www.nobelprize.org/prizes/economic-sciences/2009/ostrom/lecture/
https://www.nobelprize.org/prizes/economic-sciences/2009/ostrom/lecture/
https://doi.org/10.2139/ssrn.997834
https://ssrn.com/abstract=997834

	Governance
	Node Governance
	Reputational Scoring Model
	Proof-of-People

	Economic Governance
	Stable supply
	Stable intrinsic value

	System Upgrade Governance
	Node Base Protocol Upgrade

	Common Resources
	Open Source code
	Patents
	“Tagion” Trademark

	Hashgraph Consensus Mechanism
	Gossip protocol and Wavefront propagation
	Consensus Ordering

	Distributed Database (DART)
	Sparse Merkle Tree

	Special Records
	Name card contract
	Node contract
	Sub-Network contract

	Scripting Engine
	Transaction Scripts
	Business Model
	Parallelism
	Node Stack
	Privacy
	Decentralised Exchange using Lightning Network
	Trading flow using Lightning and Tagion Network
	Price discovery and matching
	Exchange execution rules

	HiBON Data format
	HRPC – HiBON Remote Procedure Call

	Crypto “Bank” bill
	Network
	Network Security
	DEX Trading Example
	DEX After the Trading Match

	Gene Distance
	Mutation rules
	Mutation base
	Population gene mutation
	Production gene mutation
	Transaction mutation

	Node Selection
	No central key-pair re-generation

