
Tagion Technical Paper

Carsten B. Rasmussen and Theis Simonsen

January 21, 2022

Abstract

This paper describes an alternative implementation of a Distributed Ledger Technology
(DLT) network compared to a classical network such as Bitcoin. Most other DLT networks
use a Proof-of-Work consensus mechanism to secure the Byzantine Fault Tolerance (BFT)
of the data storage. In the Tagion network, the BFT is based on the Hashgraph algorithm
and data storage on a new type of Distributed Hash Table (DHT) which makes it efficient
to maintain a distributed database and guarantee BFT. The Hashgraph algorithm is deter-
ministic and not probabilistic, allowing ordering of transactions. The order of transactions
combined with the Lightning Network and the Tagion matching and settlement protocol
constitutes a Decentralised Exchange (DEX) protocol on the Tagion network.

To reduce the probability of the network being taken over by an evil group of actors, a
new governance model is proposed, which does not rely on a central control or a group of
master-nodes.

git@github.com:tagion/docs-paper.git
337cb9d4a70389eb0a34ade61ab57f519added5f

version v1.18-cbr

Contents

1 Introduction 1
1.1 Network Architecture . 1
1.2 Network security . 2
1.3 Node Architecture . 2

2 Hashgraph Consensus Mechanism 6
2.1 Gossip protocol and Wavefront propagation . 7
2.2 Consensus Ordering . 8

3 Distributed Database (DART) 10
3.1 Sparse Merkle Tree . 12

4 Special Records 13
4.1 Name card contract . 13
4.2 Node contract . 14
4.3 Sub-Network contract . 14

5 Tagion Virtual Engine 16

6 Transaction Scripts 18

7 Business Model 20

8 Parallelism 21

9 Privacy 22

10 Decentralised Exchange using Lightning Network 24
10.1 Trading flow using Lightning and Tagion Network 24

10.1.1 Price discovery and matching . 24
10.1.2 Exchange execution rules . 26

A HiBON Data format i
A.1 HiRPC – HiBON Remote Procedure Call . iv

B Crypto “Bank” bill v

C Network vii

D Network Security viii

E Gossip Model xi

F DEX Trading Example xiii
F.1 DEX After the Trading Match . xv

G Consensus order function xix

H Gene Distance xx

a

I Mutation rules xxi
I.1 Mutation base . xxi
I.2 Population gene mutation . xxi
I.3 Production gene mutation . xxi
I.4 Transaction mutation . xxi

b

1 Introduction

This document describes the Tagion core network.
The Tagion core network includes a byzantine consensus algorithm, a distributed database
(DART) with consensus and description of node validators and the basic node selections.

1.1 Network Architecture

The Tagion network architecture consist of a collections of computer nodes which are able to
send messages between each other (A computer node is named node in this document). Each
node can send a message to any other node in the network.

The nodes in the network has different roles and the nodes will change roles over the lifetime
depended controlled by the Tagion consensus rules.

The node roles are:

Active Node A Node in this role category takes care of the validations and consensus.

Standby Node A node waiting to be selected as an active node.

Swap Node A node selected to become an active node waiting to be swapped with an Active Node .

Prospect Node A node in this category is waiting to become and ’real’ node in the network.

All the nodes communicates via protocol call libp2p [4]. The role of the node actors are
selected randomly (UDR section 3.1) according to the node consensus selection rules appendix I.

Active Node

Standby Node

Swap Node

Prospect Node

Figure 1: The Network Architecture

The Active Node ’s validates a transaction and use the Hashgraph algorithm section 2 to
reach consensus. The Hashgraph algorithm is capable of producing a consensus ordered list of

1

transaction (Defined as transaction list). This means that all the Active Node ’s will produces
the same order of transactions.
The transaction list is execution in the consensus order appendix C.

1.2 Network security

The Hashgraph algorithm is asynchronous byzantine fault tolerant meaning that if more than
2/3 of the actors are not evil (following protocol) then the network will reach consensus. If more
than 1/3 and less than 2/3 of the network actors are not evil, then the network cannot reach
consensus. If more than 2/3 then the network has been taken over meaning new protocols has
been enforced by the majority potentially destroying data integrity.

The mechanical node swapping described in section 1.1 describes this swapping of nodes,
which is UDR random. Static calculation based on different number of Active and Available
Nodes are available. The probability of an coordinated attack to take over the network can be
estimated from appendix C.

Different censorious for an attack probability has been estimated in the calculation show in
table 1. The probability numbers in column ”Halt” represents the probability of the network to
halt/slowdown and the column ”Take-over” represents the probability for that the Evil nodes
can coordinate an attack. From numbers it can be seen that the network get more robust against
attack when the ration between total nodes and evil and active nodes.

Active Nodes
N

Evil Nodes E Total Nodes M Halt p1/3 Take-over p2/3

31 31 101 0.23 1.7 · 10−7

31 31 301 4.5 · 10−5 1.2 · 10−17

31 31 501 2.8 · 10−7 2.5 · 10−17

37 31 101 0.2 1.4 · 10−9

43 31 101 0.21 1.4 · 10−12

43 31 301 1.1 · 10−6 1.5 · 10−27

43 31 501 1.1 · 10−10 3.5 · 10−34

31 43 501 1.2 · 10−5 4.5 · 10−18

31 61 501 3.9 · 10−4 3.8 · 10−14

31 61 1001 5.4 · 10−7 2.1 · 10−20

31 61 10001 1.2 · 10−17 2.6 · 10−41

Table 1: Probability of an attack versus nodes

1.3 Node Architecture

The node core program is implemented in the programming language D with some C and Go
libraries for crypto, network and virtual engine functions. It is structured, as shown in the figure
below.

2

HiRPC (HiBON) Dataformat for communication
NODE

User API - TLS 1.2 P2P Network
Tagion Virtual Machine

Consensus mechanism : Hashgraph
Storage : Distributed Database DART

Blockchain : Epoch Records

Table 2: Tagion Node stack

A Tagion Node is divided into units as shown in fig. 2 and each unit handles a service function
in the following manner:

A smart-contract is sent to the Transaction-service-unit which are fetching the inputs date
form the distributed Data-base DART unit (see section 3) and verifying their signatures of the
inputs. The DART-unit connects to other DARTs via the P2P-unit. The transaction-unit for-
wards the smart-contract to the Coordinator-unit and this information is gossiped to the network
via the P2P-unit. When the Coordinator receives an event with a smart-contract, the smart-
contract contract is verified and executed via the Tagion Virtual Machine (TVM) unit, and the
results of the outputs are verified.
The Coordinator adds it to an event in the Hashgraph and gossips the informations via the
P2P-unit to other nodes in the network. When the Coordinator finds an epoch, it make a list
of ordered transactions and forwards this list to the Transcript-service-unit. The transcript-unit
executes the smart-contracts in order and produces list called an Recorder. A Recorder contains
list of DART instructs where the inputs will be removed and outputs added. The Coordinator
sends the Recorder to the DART-uint which executes this list. The DART-unit forwards the
Recorder to the Recorder-unit and the Recorder adds this to a block-chain.
In the case where network does not reach consensus, the Coordinator will send an undo-instruction
to the Recorder-unit.
If the Recorder-unit receives an undo-instruction the recorder will send the undo-Recorder-list to
the DART-unit and the DART-unit will perform this action and put the DART in the previous
state before the last Epoch. An undo-Recorder-list is defined a Recorder where the order is
reversed and the (remove/add) instructions is inverted to (add/remove).

The Logger-unit and the Monitor-unit used for debugging and monitoring the network.

3

CoordinatorTransaction Transcript

MonitorLogger

DART

P2P

TVM

Recorder

Smart−contract

Network

Figure 2: The Tagion Node Architure

Each of the services is running as independent tasks and communication between each-other
via commutation channels. The different services modules perform the service as described in
the list below.

Coordinator This service manages the hashgraph-consensus and controls other related service for the
node. The Coordinator generates and receives events and relays to the network. This
service also generates the epoch and sends the information to the TVM services.

Transaction This service receives the incoming transaction script, validates, verifies and fetches the data
from the DART and sends the information to the Coordinator.

DART Services to the Distributed-database

P2P This service handles the peer-to-peer communication protocol used to communicate be-
tween the nodes

TVM Handles the executions of the smart contracts

Transcript Services the Epoch and orders the smart-contract execution

Recorder This services recorder this history of the DART.

Logger The service handles information logging for the different services

Monitor The Monitor service is used to graphical the activities.

Estimated bandwidth requirement and the average propagation for a transaction the formulas
in appendix E.

From simple experimental model result.

4

Example for a network with nodes N = 11 an event size of Esize = 500bytes and network
delay of tnet = 300ms the estimated epoch propagation delay and the bandwidth of:

nround = 2.2 · ln(11) ≈ 5.27

tepoch = 3.5 · nround · 300ms ≈ 5.5s

B = 500bytes · 112 = 60.5kbytes

BW = 8 ·B/(nround · 300ms) ≈ 28kbit/s

And with N = 31:

nround = 2.2 · ln(31) ≈ 8.6

tepoch = 3.5 · nround · 300ms ≈ 8s

B = 500bytes · 1012 ≈ 481kbytes

BW = 8 ·B/(nround · 300ms) ≈ 152kbit/s

And with N = 101:

nround = 2.2 · ln(101) ≈ 10.15

tepoch = 3.5 · nround · 300ms ≈ 10.6s

B = 500bytes · 1012 ≈ 5.1Mbytes

BW = 8 ·B/(nround · 300ms) ≈ 1.2Mbit/s

And with N = 1001:

nround = 2.2 · ln(11) ≈ 15

tepoch = 3.5 · nround · 300ms ≈ 16s

B = 500bytes · 10012 501Mbytes

BW = 8 ·B/(nround · 300ms) ≈ 80Mbit/s

In this example the epoch delay increases round 5s when N is increased by a decade and the
bandwidth requirement is increased around 50 times or more.

5

2 Hashgraph Consensus Mechanism

The Tagion network is based around a Hashgraph consensus algorithm and mathematical proof
discovered by Leemon Baird [1]. This algorithm solves the Byzantine Generals’ Problem of
generating a consensus order list of actions between distributed computer nodes connected in a
network. If more than 2/3 of the nodes follows the same consensus rules, all the nodes will, in
finite time, reach the same order of events. The network distributes the information via a gossip
protocol, sending information about the data received from the other nodes in the network. All
the nodes solving the Hashgraph algorithm will come to the same order of transactions. In
fig. 3 below shows a Hashgraph of gossip information representing the information flow between
network nodes. In finite time all nodes in the network will be able to build the same Hashgraph
of gossip information.

b1
Ω=2

A=−5

b4
Ω=4

A=−3

f5
Ω=5

A=5b5
Ω=5

A=−2

c8
Ω=9

A=5

a5
Ω=4

A=−1

e3
Ω=3

A=1

e4
Ω=4

A=2

e5
Ω=5

A=3

e6
Ω=6

A=4

f9
Ω=8

A=6

e7
Ω=7

A=7

c0
Ω=1

A=−2b0
Ω=1

A=−6a0
Ω=1

A=−4

a1
Ω=2

A=−3 c1
Ω=2

A=−1 f1
Ω=1

A=2

b2
Ω=3

A=−4 c2
Ω=3

A=0

a3
Ω=3

A=−2 c3
Ω=4

A=1

d1
Ω=2

A=−3

d2
Ω=3

A=−2

e1
Ω=2

A=−1

e2
Ω=3

A=0

d3
Ω=4

A=−2

d4
Ω=5

A=−1

d5
Ω=6

A=0

f3
Ω=3

A=3

f4
Ω=4

A=4

c6
Ω=7

A=3

c7 Ω=8

A=4

b7
Ω=8

A=−1

a9
Ω=10

A=1

Ω=13

A=5c12

a8
Ω=9

A=0 a8
Ω=9

A=0

d10
Ω=11

A=6

d9
Ω=10

A=6

Ω=12

A=5c11

e9
Ω=8

A=8

c5
Ω=5

A=2

Event only seen by Node 1 b2

e5Node 4 latest event

Event only seen by Node 4 f3

e2Event seen by both Node 1 and 4

e7Future events

b5Node 1 latest event

e6Node 1 latest event

N
o
d
e−

5

N
o
d
e−

4

N
o
d
e−

3

N
o
d
e−

2

N
o
d
e−

1

N
o
d
e−

0

ti
m

e
li

n
e

Figure 3: Hashgraph with altitude(A) and order parameter Ω

Each vertical line represents a compute node and each circle an event. The line between the
events represents the communication of the events between the nodes. The events coloured red
define a witness that is used to divide the consensus into rounds. Each round decides a list of
events to be collected. This list of events is called an epoch and must be sorted into the same
order as all other nodes. The description of the Hashgraph algorithm can be found in [1].

6

2.1 Gossip protocol and Wavefront propagation

The Hashgraph algorithm uses a gossip protocol called “gossip about gossip” to propagate infor-
mation between the nodes. It means node A sends all the information of the communication that
it knows to a randomly selected node B. This enables node B to construct the same Hashgraph
as node A. (Patent [3])

In the Tagion network, a protocol called Wavefront is used to exchange information between
two nodes, ensuring that node A and B only need to communicate three times to share the state
of the graph. Each node keeps track of an integer value called Altitude. Altitude is increased
by one for each event created by the node. Each node stores its current view of Altitude for
each node in the network. By exchanging information about the Altitude between two nodes,
both can figure out if their altitude is higher and send a list of events which are in front. The
information of altitudes is called an wavefront.

The Wavefront information exchange has four states:

1. Node A selects random Node B and sends a list of all Altitudes. This state is called a
tidal-wave.

2. Node B receives a tidal-wave from Node A. If Node B has already sent a tide-wave to Node
A, then Node B will send what is called a breaking-wave to Node A. Otherwise Node B
will return a list of all events which are in front of the tidal-wave of Node A. This state is
called first-wave.

3. If Node A receives a first-wave from Node B, it returns a list of all the events which are in
front of Node B. When this state has been reached the wavefront exchange ends.

4. If Node A or Node B receives a breaking-wave, the wavefront communication is dropped.
This prevents both nodes from going into an infinity echo where they forever send informa-
tion back and forth. In the network, a node will often have many simultaneous wavefront
connections so it will sometimes receive the same event package from other nodes. Then it
will drop any duplicated events it receives.

In fig. 4 the state diagram are shown and which show an communication example of the graph
shown in fig. 3 where node number 1 initial the communication.

7

N
o

d
e

4

N
o

d
e

1

Initiate a Gossip from Node 1 to 4

Idle StateIdle State

1,b5

1,e5

Fris
t−wave

Second−wave

W =[−3, −2, 1, −2, 0, 2]

events :
 {e3, e4, e5, f3

, f4
}

events : {a1, b1, b2, b4, b5, c2, c3} Second−wave State

First−wave State

Initial State

Tidal−wave State

Tidal−wave

W =
[−4, −

6, −
1, 3

, 4
]

Figure 4: Wavefront communication state

2.2 Consensus Ordering

In the Tagion implementation of the Hashgraph algorithm, an Event is only allowed to point to
one or none “other parent” which is called a “father-event” as shown om fig. 5. This strategy aids
in solving the graph forking problem and simplifies the consensus ordering. The “self-parent” is
defined as a “mother-event” in the Tagion implementation. An event must have a mother-event
but doesn’t have to have a father-event.

Each event points to the previous event called the mother-event, and some also point to
another father-event. The mother-event is defined as the previous event from the same node.
The father is an event sent via the gossip network from another node.

The order Ω is calculated as:

ΩB,k+1 = max
(
ΩA,k,ΩB,k

)
+ 1 (1)

The events in the epoch list are sorted by the order Ω. If the order of two events is equal,
the hash h of the event is used to calculate the order. The following expression is used to order
the events:

l(A,B) =

{
l′(A,B) if (ΩA = ΩB)

ΩA < ΩB otherwise
(2)

8

l′(A,B) =

l(Amother, Bmother) if (A has a mother & B has a mother)

l(Afather, Bfather) if (A has a father & B has a father)

0 if (A has a no father)

1 if (B has a father)

H(hA ‖ hB) < H(hB ‖ hA) otherwise

(3)

If parameter l(A,B) is ′true′ if event A is ordered before event B (see appendix G).

k+1
B

k
B

k
A

P
o

in
ts

 t
o

 m
o

th
er

Poin
ts

to
 fa

th
er

Poin
ts

to
 so

n
P

o
in

ts
 t

o
 d

au
g

h
te

r

Figure 5: Events and relations

9

3 Distributed Database (DART)

Distributed Archive of Random Transactions (DART) [Patent [2]] is built to store and keep
track of transactions in the Tagion network. The database efficiently handles the removal and
addition of transactions in a secure and distributed manner. Each transaction is stored in a
distributed hash-table using a cryptographic hash of the transaction T data. Each transaction is
identified by a unique hash value h. The transaction is put into a table ordered by the numerical
value of the hash.

h = H(T), h ∈ [0 : 2N−1 − 1], N ∈ N (4)

Si ∈ [i · 2N−M : (i+ 1) · 2N−M], i ∈ [0 : m− 1], m = 2M (5)

H is the cryptography hash function

N represents the number of bits

M represents the bit witdh of the sector

h hash value

S is sections

m hash-table divided into sections S

1

2

3

4

5

5

Section

Node

Section Hash

Bull’s Eye

Section SMT

Central SMT

Figure 6: The structure of the DART database

10

The hash-table is distributed between the nodes in the network, where each node manages
a sample of sections. A section must be managed by more than Q nodes to keep redundancy
and security of the data. Each node must maintain the database sections within the node’s
section angle. This means adding and removing the transaction and updating the Merkle-tree
root of the section hash. The DART is updated according to the transaction list in an epoch
generated by the network. The scripting engine will evaluate actions in the epoch and decide
if an archive should be added, removed or selected. The selection of an archive means that the
archive is sent back to the network and deleted from the DART. When a node updates a section,
it must calculate the Section Merkle-root and sign it and send it to the network. The signed
section and the selected archive are distributed to the network via the gossip protocol. Each
node will collect all the signed roots of the updated section when the majority has been reached
for all updated sections. The node must calculate the Bull’s eye (Merkle root) of the DART and
sign and distribute the information via the gossip protocol. When the majority of the nodes
in the network has reached a consensus of the Bull’s eye value, the DART is considered to be
updated. If no consensus has been reached for DART, the current transaction in the epoch must
be dropped, and the DART must revert to the previous state. The Bull’s eye value is stored in
a hash-linked chain of blocks where each block points to the previous block’s hash. Each block
contains the Bull’s eye pointer and a block number. It ensures data integrity, the state of the
database. The concept is shown in the figure below.

C220 A3 C2 ..

A3 57 ..19 94

A3 57

20 A3 CA 48 ..4A 29

CA 48

20

A320

A3 CA 48 ..7C

D9

73

38 ..

20 A3 33 49 ..

20

94 ..

A4

48CA

57

A3

38 ..9B20 A3 C7

8A

20

20

Sector

R_0 R_1 R_2 R_3 R_4

Figure 7: The data structural layout of DART database

11

3.1 Sparse Merkle Tree

The data in a section is mapped using a Sparse Merkle Tree (SMT) which makes it efficient to
add into and remove archives from the Merkle tree.
The hash point into the DART is divided by rims. Rim zero is the most significant byte (MSB)
of the hash fingerprint of the archive. Rim one is the next byte in the hash etc.
In the current implementation of the DART, the first two rims are used as the section index.
Thus the DART has a total number of indices 216 = 65536 which is equivalent to the two bytes
unsigned number.
Each section stores the archive in a hash table. An SMT is used as a look-up table, and each
rim is sectioned into a sub sparse Merkle tree. This means that rim two is the first SMT and
rim three is the second SMT etc.
As a comparison, a traditional Merkle tree with 224 = 83 ≈ 16 · 106 Archives. Calculating a full
Merkle tree requires the calculation of around 32 · 106 hashes. By contrast, using an SMT with
16 · 106 archives mean just around 2000 hashes have to be calculated.

Core protocol updates
The DART will be used for protocol updates by the following consensus. One or more nodes

will need to run the new protocol update in a parallel DART containing the same transaction
information as the current accepted DART. The new DART will have a new Bull’s eye DART
Merkle Root (Bullseye), and this will result in a fork of the Bull’s eye chain. When the majority
of the nodes run the newly upgraded nodes, they can decide to drop support for the old DART
and run the new DART. When enough nodes stop running the old DART, it will not be able to
reach a consensus, and the upgrade has completed.

DART garbage collection
A garbage collection script will run every (G) epoch and remove all the bills which are older

than a specified date. Bills that have not been used for a long period will be burned, which
ensures that the system does not contain dead bills/money. It is the owner’s responsibility to
recycle their bills before the expiry date.

Unpredictable Deterministic Random
The merkle root Bullseye is used as seed for the Unpredictable Deterministic Random

(UDR), which is used in the different algorithmic consensus for the network.

12

4 Special Records

The archives are stored in the DART using the hash-fingerprint as an index-pointer like in
Distribute Hash Tabel (DHT) (See section 3). The hash of an archive is calculated in two ways
as follows. If the archive does not contain #′param′ the hash is calculated from the binary data
of the HiBON archive and if the #′param′ exists this type of archive is call Parameter Indexed
Archive (PIA). For a PIA the hash-pointer is calculated for the content of the #′param′.

The parameter starting with a dollar sign is reserved for use as system parameters (like
$′param′) and should only be used for as such, or else the system will reject it as an error. In
particular, $type is used to set the type of an HiBON object. An PIA-archive must contain a
$type parameter.

Some of the parameters in this special archive has restricted access. The access ro means
that this parameter is set on the creation of the archive and can not be changed. The rc access
means that this parameter is controlled and updated by the network and can only be read.

4.1 Name card contract

A Network Name Card (NNC) is a record which are composed of two archives Name Card
Label (NCL) and Name Card Record (NCR) both of the archives are stored in the DART.

The NCL label card sets the NNC name and NCR record stores the data related to the
name-card (see table 4). The two archives are always updated in pairs in the network.

The hash-pointer of an NCL is calculated for the name-parameter and not for the archives
in itself. The NCL can and must only contain the parameter as shown in the table 3.

When an NNC is updated the NCR is updated, the $previous hash-pointer is set to the
previous NCR and the $index is increased by one. The $record parameter in NCL is set to the
hash-pointer of NCR and $sign is set to the signature of $record.

The $index of the first NCR is set to 0, and the $previous parameter is to hash value of
$pubkey of the NCL archive.

The $lang sets the type of restricted letters and symbols which is allowed to be used in the
NNC name.

Parameter Description Type Access
$type Set contract type to ’NCL’ string ro

#name Name of the name-card string ro

$lang Language letter code string ro

$time Creation date utc ro

$pkey Public key ubyte[] ro

$sign Signature of the $record ubyte[] rc

$record Hash pointer to the NCR archive ubyte[] rc

Table 3: NCL Network Name Card

13

Parameter Description Type Access
$type Sets the contract type to ’NCR’ string ro

$name Hash value of the NCR.$name ubyte[] ro

$previous Hash pointer to the previous NCR ubyte[] rc

$index Index number uint rc

$node Optional node record # rc

...

Table 4: NCR Network Name Record

4.2 Node contract

Network Node Record (NNR) is used to store the node data of the record

Parameter Description Type Access
$type Set contract type to ’NNR’ string ro

#node Public key for the node ubyte[] ro

$name Hash value of the NCR.$name # ro

$time Creation date utc ro

$sign Signature of $name by NCR.$pkey ubyte[] rc

$state The state of the (PN , N , AN) uint rc

$gene Node gene bit-string ubyte[] rc

Table 5: NNR Network Node Record

4.3 Sub-Network contract

Via a special contract executed on the Tagion Main Network (TMN) a Tagion Sub Network
(TSN) can be launched. This sub-network will create a new sub-DART which only can be
updated from the nodes running the TSN.
A group of nodes can initiate the sub-network by signing this contract and stake an amount in
TGS.
The rules for the TSN are set when the network is launched, and the rules can differ from the
rules in TMN. The TSN can be assigned to a group of nodes or fully open for all nodes. When
a TSN is launched an Tagion Sub Network Funds (TSNF) is created on the main network to
hold the funds for the fees in the main network. The funds are used to pay rewards to the nodes
running the TSN and to pay fees to the main. When an epoch is created in the bull’s eye for
TSN, a contract is automatically sent to the MTN, and a fee is deducted from the TSNF account
and burned. If there are not enough funds in the TSNF account, TMN rejects the contract.

TGS used in the TSN must be locked in a Tagion Sub Network Account (TSNA) these funds
can only be transferred between other TSNA and to the TSNF. Funds can not be transferred
from TSNF to a TSNA.

The funds in TSNA can be transferred to TGS-bills again via TSNA-contract this contract
can take multiple TSNA as input and will transfer all the funds to bills on the output, all the
input TSNA will be deleted from DART as is the case with TGS-bills.

Basic rules for a Sub-Network

14

§1 TSN can have a different rule set then applies for TMN

§2 No nodes can transfer money out of a TSNF account

§3 An TSNF account is used to pay rewards to the TSN nodes and the burning fees to the TMN

§4 An TSNA account funds can be transferred to a TSNF account

§5 An TSNA account can transfer money to other TSNA accounts. The fees burned are a little
higher than fees for bills.

§6 The rewards in the TSN are paid from the TSNF account because a TSN can not print TGS
as rewards as is the case for TSN.

15

5 Tagion Virtual Engine

The scripting engine’s language is called Funnel. It is based on a stack machine, which is a sim-
ple, functional language inspired by the programming language FORTH. The scripting engine
executes at different run levels. The lowest level is full Turing equivalent and is only able to make
conditional forward jumps; it cannot run loops or functions. The scripting engine is limited by
the number of instructions executed, call stack depth, data stack depth and memory.

The limitation is done to prevent a script running into infinite loops. The transaction script
can use a library of standard functions which is stored in the DART, and the fingerprint of the
script which is stored in the Bull’s eye blockchain that is the current state of the script.

Run level Description Limitation
0 Consensus script No limits, full Turing equivalent
1 Debug script function

(read-only)
Limit resources, read-only call function to level 0

2 Transaction function Limit resources and call function to levels 0 and 1
3 Transaction script Limit instruction and call function to level 2

Table 6: Runlevels for the Scripting engine

In contrast to standard FORTH, Funnel is a strictly typed language which supports the types
shown in table 7.
Converting from one type to another must be explicitly instructed via a type casting function. If
the casting fails, the scripting engine generates an error and the script stops. The scripting engine
stops on overflow/underflow/divide-by-zero errors and if an operator is operating on invalid types.

name Description D-Type
TEXT UTF-8 text string

INTEGER signend 64-bits number long

CARDINAL Unsignend 64-bits number ulong

BIG Unsigend big integer number BigUint

HiBON HiBON Read/Write-only HiBON

DOCUMENT HiBON Read only Document

BIN Byte arrays, used to hold keys and hash value ubyte[]

Table 7: Scripting types supported

Funnel Sample code for a test contract

1

2 bool run (Document)
3 v a r i a b l e t r a n s o b j
4 v a r i a b l e t r a n s s c r i p o b j
5 v a r i a b l e s i g n a t u r e s
6 v a r i a b l e h a s h t r a n s s c r p o b j
7 v a r i a b l e payees
8 v a r i a b l e payers

16

9 v a r i a b l e no payers
10 v a r i a b l e n o s i g n a t u r e s
11 v a r i a b l e s c r i p e n g o b j
12 v a r i a b l e b i l l s
13 v a r i a b l e n o b i l l s
14

15 : l o a d t r a n s a c t i o n o b j e c t
16 t r a n s o b j !
17 t r a n s o b j @ ’ t r a n s a c t i o n s c r i p t i n g o b j e c t ’ doc@
18 t r a n s s c r i p o b j !
19 t r a n s o b j @ ’ s i g n a t u r e s ’ doc@
20 s i g n a t u r e s !
21 t r a n s s c r i p o b j @ hash256
22 h a s h t r a n s s c r p o b j !
23 t r a n s s c r i p o b j @ ’ payees ’ doc@
24 payees !
25 t r a n s s c r i p o b j @ ’ payers ’ doc@
26 payers !
27 payers @ length@ no payers !
28 s i g n a t u r e s @ length@ n o s i g n a t u r e s !
29 ;
30

31 : l o a d s c r i p t i n g e n g i n e o b j e c t
32 s c r i p e n g o b j !
33 s c r i p e n g o b j @ ’ b i l l s ’ doc@
34 b i l l s !
35 b i l l s @ length@ n o b i l l s !
36 s c r i p e n g o b j @ ’ t r a n s a c t i o n o b j e c t ’ doc@
37 l o a d t r a n s a c t i o n o b j e c t
38 ;
39

40 : get payee ownerkey
41 local payee
42 local payees
43 local i ndex
44 i ndex !
45 payees !
46 payees @ index @ doc@ payee !
47 payee @ ’ ownerkey ’ doc@
48 ;

17

6 Transaction Scripts

When the network receives a transaction request, it is added in an epoch and executed by the
scripting engine. A transaction request includes a transaction object which is a data package
in HiBON format. The HiBON object contains input bill numbers and the transaction script
including a list of digital signatures which signs the transaction script object. The signatures
can be verified via the public keys represented in the input bills.

Parameter Description Type Access
$type Set contract type to ’B0’ string ro

$V Value ulong ro

$k Epoch number uint ro

$T Bill type string ro

$Y Doubled hashed Owner key ubyte[] ro

...

Table 8: Standard archived Bill object

Parameter Description Type Access
$in Array of Bill numbers and public keys [] ro

$read Array of Bill numbers and public keys [] ro

$out Array of public key hashes [] ro

$params Parameters used by the script {} ro

$script Transaction script {} ro

Table 9: Transaction scripting object

Parameter Description Type Access
$record Scripting object {} ro

$signs Array of input signatures [] ro

Table 10: Transaction object

Transaction Epoch consensus rules:

1. If one or more script objects is found with the same input bill number, the first transaction
object in the epoch is kept in the epoch list. Any other object flows in the list are removed.

Transaction object initial consensus rules:

1. The size of the inputs array in the script record must be one or more.

2. The size of the inputs array and the signature arrays must be the same size.

3. The bill type of the first type input must be a Tagion type.

4. Duplicate bill numbers are not allowed.

18

5. All the inputs must be in the current state of the DART.

If a transaction object violates one of the initial consensus rules, it is handled by a violation
script function.

Transaction scripting execution: Because the epoch list is guaranteed to prevent inputs
with same bill number, a node can choose to execute the scripts in the epoch in parallel.

First execution procedure and rules:

1. The bills within the node’s DART angle are read from the DART.

2. The read bills are gossiped to the network.

3. If the script object has only one input, the script is immediately executed.

4. If all the bills in the inputs are covered in the local DART, the script is executed immedi-
ately.

Second execution procedure and rules:

1. The script is executed if all the inputs are received or read for a transaction object and the
signatures are correct.

2. The script must finish with a burn function which burns the transaction fee.

3. If the sum of all outputs of the bill type Tagions (bill type can be Tagions or external
contracts of, e.g. Euros) is greater than the sum of the input minus the transaction fee,
the first input bill is scheduled to be removed, and the transaction is ignored.

4. If the sum of all outputs of types other than Tagion is greater than the input, the first
input bill is scheduled to be removed, and the transaction is ignored.

DART execution procedure:

1. When all scripts have been executed, the process of updating the DART begins.

2. All inputs of successfully executed scripts must be removed from sections covered by the
node.

3. All outputs of the successfully executed script must be added to the sections covered by
the node.

4. All the Merkle roots within the section angle must be calculated and signed and gossiped
to the network. Note: From this point, the node can start executing the next epoch.

5. When the node has received the majority for all the sections’ Merkle, it calculates the
Bull’s eye of the DART, which is signed and gossiped to the network.

6. When the majority of consistent Bull’s eyes has been received, the node decides that the
DART has been updated and changes states. Note: A transaction has been completed at
the new state.

7. If one of the above rules fails, the DART is reverted to the previous state.

Note: When a node receives a transaction object, it can send a request to the DART to
collect the inputs of the script. By doing the execution in parallel, it improves the transaction
time instead of starting to collect inputs when the epoch has been completed.

19

7 Business Model

The business model consists of two parts, namely incentives and fee payments. The incentives
are given to the nodes for their work and fees are paid by the users for using the system.

Money printing - incentives New money is added to the system when an epoch has been
completed, and the DART has reached a consensus. The newly printed money is rewarded to
one of the active nodes if it has successfully executed the epoch.
The reward winning node is selected via a UDR Lottery, which is seeded from the bull’s eye hash
of the DART where the epoch was generated.
The amount is calculated by an economic protocol controlled by the economic governance, see ??.

Money burning - payment When a transaction is performed in the network, more fees are
paid by the user initiating the transaction. The fees depend on storage, the transaction amount
and the script execution load. The fees paid to the network are burned; thus, the amount is
taken out of the money supply. A storage fee is paid per bytes of the total sum of bytes of all
outputs stored in the DART.
A transaction fee is paid as a fraction of the total Tagion amount of the input of the transaction
script.
The execution fee is calculated per script instructions where each instruction is priced.
If the total Tagion amount of the output transaction script is less than a specified limit, the
whole amount is burned and the transaction is not valid. Fees for decentralised exchanges are
described in section 10.

20

8 Parallelism

Transactions with independent bills can run in parallel, enabling scalability and performance.
Independent bills mean that inputs and outputs of transactions are not the same bills. It can
run in parallel because the overall design of the data, DART and the scripting engine makes it
possible.
The scripting engine is an event-driven engine that executes functions in parallel with inputs and
produces outputs locally on each node. Inputs which must be used are read from the DART, and
the outputs are stored in the DART. When the transaction successfully completes, the inputs
are deleted.

The database is distributed, thus nodes only maintain and keep a copy of the part of the
database they are subscribed to, see section 3. Because transactions’ inputs and outputs are
independent and each node only executes a part of the transactions, they can be executed in
parallel and the database updated in parallel as well.
It is not the transaction instructions, which are stored in the database, but the actual bills, which
are used as inputs and outputs. Then all nodes do not need to execute all data to verify the
integrity of the database as in typical blockchain structures. The consensus event and consensus
data are thus merely an intermediate calculation, where the output is stored.

21

9 Privacy

The current banking system achieves a level of privacy by keeping key information hidden from
the public. Under this regime, all identities are known by the trusted third party, i.e. the bank.

In the Tagion system, all transactions and bills are public, but physical identities are sepa-
rated from transactions and bills. The system has full transparency regarding how many bills
exist. A public key is bound to a bill and not an account, and the private key is for signing and
spending the bill.

Identies Bills

Private Domain Public Domain

PublicKeysTransactions

Figure 8: Private and Public domain

Tagion bills are not linked in a chain because each time a bill is spent, a transaction is recorded
in the database, deleting the old bill and creating a new one. A full trace of the network will,
however, reveal the inputs and outputs of transactions, thus linking the bills. Over time, the
bills split and re-combine as they become part of multiple in and out transactions. Therefore, it
is not feasible to search back through the linking of bills for a pattern, because it is not a 1:1
trace of bills and would cause an NP (non-polynomial) problem, which cannot be solved in finite
time.

22

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Figure 9: A transaction is represent as a hexagon with a flame the small-bank-note with a t
represent bills

A user can determine if the same public key should be the owner of all his/her bills or a
different, derived, public key. They can hold a different public key for each owned bill, and these
keys may not correlate with each other. By using a different public key for each node, a user can
make transactions in full privacy, i.e. anonymously.
A node is a public servant and therefore needs to reveal public information. A node in the Tagion
system needs to use a fixed public key to ensure the governance of the node. The public key is
the identifier for the node that can be perceived as an account, and it is the account for receiving
rewards.

23

10 Decentralised Exchange using Lightning Network

Via a TSN, interfacing other alien Distributed Ledger Technology (DLT) for exchanges is possi-
ble. Most of the current DLTs are based on Prof Of Work (POW) which secures the immutability
of the ledger and has been proven to be very robust. The downside for those types of DLT is the
long confirmation time.
A suggested solution to decreasing the confirmation time is to use a second layer solution using
a network of payment channels like the Lightning Network (LN).
Tagion Network (TN) and LN support each other to enable a Decentralised Exchange (DEX)
for DLT networks which support full-duplex payment channels, Hashed Time Lock Contract
(HTLC) and Multi Signature (MultSig). The advantage of using the TN as a support system
to store intermediate data for the payment channels is that the LN-nodes can share data even
if some of the LN nodes go offline. In the current LN use in Bitcoin and other similar networks,
the routing between the payment channels is a challenge. One of the reasons for this is that the
routing tables are difficult to share and maintain between the nodes. In Tagion, because data is
stored in a DART this makes sharing data feasible.
Because funds in an alien DLT can be locked via an HTLC, the alien-currency (ALC) the funds
can be swapped with the native tagion-currency in an atomic manner. This feature enables
the Tagion network to support exchange functionality in a decentralised manner providing full
liquidity because all exchange pairs have Tagions as the counterpart.

10.1 Trading flow using Lightning and Tagion Network

The Tagion network can order the bids/asks in a Byzantine Fault Tolerant (BFT) manner. This
means that the network is able to come to a consensus on the order of transactions and this solves
the matching and prices discovery in a fair manner and solves front-running the order-book in a
decentralised manner.

The idea is one STN handles only one trading pair between TGS and ALC. By only using one
pair, the matching and routing problem is reduced significantly in comparison to a full multi-
currency-DEX with more than two currencies.
First of all, the price discovery is more straightforward, and the amount of data to process is
much less if only one pair must be matched and discovered. The second advantage of the one
pair DEX is that sub-networks only need to handle one alien smart contract format.

10.1.1 Price discovery and matching

The DEX are able to handle two types of orders as shown in table 12 and table 11. The orders
are sent to the TN and at each epoch the trade-order-queue is sorted according to the hashgraph
consensus ordering.

Exchange order pairs

ATO Order to buy TGS for ALC

BTO Order to buy ALC for TGS

The matching-engine will maintain two sales-lists of Ask Trade Orders (ATO) and a Bid
Trade Orders (BTO), those sales-lists are sorted according to the exchange rate with the lowest
exchange ratio at to top of the list. A detailed example can be found in appendix F.

24

The ask exchange rate is defined as:

Eask =
Q

P
in unit [ACL/TGS] (6)

The bid exchange rate is defined as:

Ebid =
P

Q
in unit [TGS/ACL] (7)

P is the price in TGS

Q is the price in ACL

The trade-order-queue is maintained with the orders that are not executed. A new trade-
order-queue is generated in each epoch and added in the end of the current trade-order-queue.
The matching executes the first in trade-order-queue, i.e. the oldest order is searched first for a
match.

The ATO and BTO order in the trade-order-queue are defined as buyers. A match is defined
as found, when the buyer’s exchange-rate is higher than or equal to the seller’s exchange-rate from
the corresponding sales-list. The price of the settlement will be set at the seller’s exchange-rate.

• When an ATO buys from BTO-sales-list at Eask,BTO price when:

Eask,ATO ≥ Eask,BTO or the same as QATO

PATO
≥ QBTO

PBTO
.

• When an BTO buys from ATO-sales-list at Ebid,ATO price when:
Ebid,BTO ≥ Ebid,ATO or the same as PBTO

QBTO
≥ PATO

QATO
.

Summarising, a buyer with an ATO-order from the order-queue matches a seller with a BTO-
order from the BTO-sales-list and vice versa. Then the size is calculated, and a trading-contract
with the corresponding pair is generated and stored in the TN.

If the ATO or the BTO has sold the whole size, then the order is removed from the lists.
If an order includes a valid time period of t and if the epoch consensus time is greater than this
valid time period t then the order is removed and not executed.

Parameter Description Type Access
$type Set the contract type to ’ATO’ string ro

P Price unit TGS ulong ro

Q Price unit ACL ulong ro

size Size of ACL ulong ro

lock Random Hash-lock key bin ro

time Valid time period utc ro

Table 11: ATO HiBON to buy TGS for ALC

25

Parameter Description Unit Access
$type Sets the contract type to ’BTO’ string ro

P Price unit TGS ulong ro

Q Price unit ACL ulong ro

size Size og TGS ulong ro

lock Random Hash-lock key bin ro

time Valid time period utc ro

Table 12: BTO HiBON to buy ALC for TGS

10.1.2 Exchange execution rules

Carol

Bob

Dave

Alice

Lightning Network

TN

Figure 10: Tagion Decentralised Exchange based on Lightning Network

In the following example, the execution flow of the DEX is described.

Alice wants to trade TGS for ALC (ATO). It can be done as follows.

A.1 Entry: Alice opens an LN channel with Bob.

A.2 Alice requests a trading channel from Bob with a guarantee of ωalice,S in ALC

A.3 Bob locks up a guarantee of an amount τbob,S in TGS which matching Alice’s ωalice,S amount.
Bob creates an HTLC lock it with Rbob and send this information to the TN.

A.4 Alice pays ωalice to the contract lock with Rbob.

26

A.5 Order: Alice sends an order to the TN including an HTLC contract to Bob locked with
Ralice and the amount αalice in ALC. The information includes the bid/ask prices and HTLC
contract which is sent to the TN.
Note: Carol has previously locked funds with Rcalor in TGS to buy ALC

A.6 When the TN discoveries a trading pair matching Alice and Carol the network generated a
TN-HTLC trading contract locked with both Ralice and Rcarol.

A.7 When Bob verifies that, Carol has to reveal Rcalor. Bob initials a route between Alice to
Carol according to the trading bill. Bob also makes an HTLC return the rest of Alice’s
funds locked with Ralice.

A.8 Alice reveals Ralice and the funds can be transferred.

A.9 Exit: Alice can ask Bob to reveal Rbob and exit the trading channel. Bob’s locked funds
are returned, and Alice can claim her funds.

Carol wants to trade ALC for TGS (BTO). It can be done as follows

B.1 Entry: Carol opens an LN channel with Dave.

B.2 Carol requests a trade channel with Dave, both Carol and Dave guarantee τcarol,S and τdave,S
in TGS and hash-locked with Rcarol in the TN.

B.3 Order: Carol sends an order to Dave via the TN.

B.4 Dave receives a confirmation from the network about the order from Carol.

B.5 Dave and creates an HTLC contract to Carol locked with Rdave at the amount of αcarol,T

in ALC.

B.6 When the TN discovers a trading pair matching Alice and Carol, the network generates a
TN-HTLC trading contract locked with both Ralice and Rcarol.

B.7 Dave reveals the Rdave the Alice can execute the trade.

B.8 Exit: Carol can ask Dave to reveal Rdave and exit the trading channel. Dave’s and Carol’s
locked funds are returned.

27

A2
Request

A4

A2

Rcarol

A7

Request

B1

B2

B5

B6

B4

B8B8

Bob

A1

A3

Locks a guarentee to Rbob

Offer HTLC(Alice)

TN−HTLC(Alice&Carol)

Alice

A1

A5

HLTC(bob)

A8
Ralice

A9

Exit

New Offer

Lightling Channel Initiated

Dave

Trading pair for Carol

Rcarol

Rdave

Offer to Dave

Confirmation

HLTC(dave)

Exit

New Offer

Tagion Network

Trading Contract Executed

Prices discovery

B1

B2

B3

B7

B9

A8 & B8

A6 & B6

Carol

Buying ACL for TGSBuying TGS for ALC

Figure 11: DEX transaction flow

Incentives and Penalty If one or more of the 4 participants (Alice, Bob, Carol and Dave)
fails to execute the trade, the flowing penalty rules will be performed by the TN consensus.

§1 Alice doesn’t claim the transaction

Incident

• If Alice does not reveal Ralice within the timeout limit.

28

Action

• After a timeout period less than the Alice HLTC time lock.

• The funds will be reverted to Carol.

• The trade is deleted.

• Bob keeps Alice’s stacked fund’s.

• If the price of Alice’s funds is less than Bob’s guaranteed funds, Bob gets some of
his funds back, which corresponds to the current trading prices.

• The rest of Bob funds is burned.

• If Alice reveals the Ralice after the timeout, Alice loses her funds to Carol.

§2 Bob doesn’t initial the routing

Incident

• If Bob is offline or choses not establish a connection within the a timeout period.

Action

• Bob loses his funds and the trade bill is deleted.

• Carol’s funds are returned.

• Alice will get her funds back after the HTLC time lock runs out.

§3 Carol doesn’t claim the transaction

Incident

• Carol does not reveal the Rcarol within the timeout limit.

Action

• If Bob makes creates a contract which returns Alice’s funds with a time limit Bob
gets his funds back.

• Carol’s transaction stake is burned and the rest of the funds is returned to Carol.

• The transactions bill is deleted.

§4 Dave doesn’t accept the routing

Incident

• If Dave is offline or choses not establish connection within the a timeout period.

Action

• After the timeout Carol can reclaim the stack ωcarol and open a new channel with
Eric.

• Dave’s stack ωdave is burned

• Carol can initial the trade by revealing Rcarol.

• The transaction’s bill is deleted after execution.

29

A HiBON Data format

All data exchanged and stored in the network is structured using a data format called Hash-
invariant Binary Object Notation (HiBON) which is inspired by Binary JSON (BSON), but
the two formats are not compatible. In HiBON the keys are sorted according to the ordering
rules described below (in D-lang). By ordering the keys, the data is hash invariant for the same
collection.

1 /∗∗
2 This func t i on dec ide s the order o f the HiBON keys
3 Returns :
4 t rue i f the va lue o f key a i s l e s s than the va lue o f key b
5 ∗/
6 @safe @nogc bool l e s s t h a n (s t r i n g a , s t r i n g b) pure nothrow
7 in {
8 a s s e r t (a . l ength > 0) ;
9 a s s e r t (b . l ength > 0) ;

10 }
11 do {
12 uint a index ;
13 uint b index ;
14 i f (i s i n d e x (a , a index) && i s i n d e x (b , b index)) {
15 return a index < b index ;
16 }
17 return a < b ;
18 }
19

20 /∗∗
21 Converts from a t e x t to a index
22 Params :
23 a = the s t r i n g to be conver ted to an index
24 r e s u l t = index va lue
25 Returns :
26 t rue i f a i s an index
27 ∗/
28 @safe @nogc bool i s i n d e x (const (char []) a , out u int r e s u l t) pure nothrow {
29 import std . conv : to ;
30

31 enum MAX UINT SIZE = to ! s t r i n g (u int . max) . l ength ;
32 @nogc @safe stat ic ulong to u long (const (char []) a) pure nothrow {
33 ulong r e s u l t ;
34 f o r each (c ; a) {
35 r e s u l t ∗= 10 ;
36 r e s u l t += (c − ’ 0 ’) ;
37 }
38 return r e s u l t ;
39 }
40

41 i f (a . l ength <= MAX UINT SIZE) {

i

42 i f ((a [0] i s ’ 0 ’) && (a . l ength > 1)) {
43 return fa l se ;
44 }
45 f o r each (c ; a) {
46 i f ((c < ’ 0 ’) | | (c > ’ 9 ’)) {
47 return fa l se ;
48 }
49 }
50 immutable number = to u long (a) ;
51 i f (number <= uint . max) {
52 r e s u l t = cas t (u int) number ;
53 return true ;
54 }
55 }
56 return fa l se ;
57 }

Only printable ASCII keys are allowed to be used as keys in the HiBON; this means no
control characters or special characters allowed. The key is validated accordingly to the function
described below.

1 /∗∗
2 Checks i f the keys in the range i s ordred
3 Returns :
4 tu re i f a l l keys in the range i s ordered
5 ∗/
6 @safe bool i s k e y o r d e r e d (R) (R range) i f (isInputRange !R) {
7 s t r i n g prev key ;
8 while (! range . empty) {
9 i f ((prev key . l ength == 0) | | (l e s s t h a n (prev key , range . f r o n t))) {

10 prev key = range . f r o n t ;
11 range . popFront ;
12 }
13 else {
14 return fa l se ;
15 }
16 }
17 return true ;
18 }

ii

Data type Code D-Type Description
float64 0x01 double 64bit floating point
string 0x02 string UTF-8 string
Embedded document 0x03 {} HiBON object
Embedded array 0x04 [] HiBON Array object (Only index numbers allowed)
Boolean 0x08 bool Boolean false=0, true=1
64bits UTC Time 0x09 utc UTC datetime 64bits signed integer
int32 number 0x10 int 32bit usigned number
int64 number 0x12 long 64bits signed integer
float128 0x13 decimal 128bits floating point
Big integer 0x18 bigint Signed big integer
uint32 0x20 uint 32bit unsigned number
float32 0x21 float 32bit floating point
uint64 0x22 ulong 64bit unsigned number
Big integer 0x28 ubigint Unsigned big integer
Native Document 0x43 Document Reserved for internal use only
Defines Array 0x80 void Reserved type for internal use only
Array of float64 0x81 double[] Array of unsigned 64bits integer (size is multiple of

8bytes)
Binary string 0x85 ubyte[] Array of bytes (size is multiple of 1bytes)
Array of int32 0x90 int[] Array of 32bits signed integers (size is multiple of

4bytes)
Array of int64 0x92 long[] Array of 64bits signed integer (size is multiple of

8bytes)
Array of int32 0x90 int[] Array of 32bits integer (size is multiple of 4bytes)
Array of uint64 0x92 long[] Array of 64bits integer (size is multiple of 8bytes)
Array of float128 0x93 decimal[] Array of 128bits floating point (size is multiple of

16bytes)
Array of uint32 0xA0 uint[] Array of unsigned 32bits integer (size is multiple of

4bytes)
Array of float32 0xA1 float[] Array of 32bits floating point (size is multiple of

4bytes)
Array of int64 0xA2 ulong[] Array of unsigned 64bits integer (size is multiple of

8bytes)
Defines string arrays 0x83 string[] Reserved type for internal use only
Defines Document ar-
rays

0xC3 Document[] Reserved type for internal use only

Defines HiBON arrays 0x82 HiBON[] Reserved type for internal use only

Table 13: HiBON Basic data-types

Any data types which are not defined in table 13 are illegal and must be rejected by the
network. The types used in the table are primarily the types used in D except for a few as {}
and [].

iii

A.1 HiRPC – HiBON Remote Procedure Call

Hash invariant Remote Procedure Call (HiRPC) works like JSON-RPC just with signed binary
data, the above-defined HiBON format. It means the data is hash-invariant enabling hash- and
signature functions to be executed quickly and unambiguously.

Parameter Description Type Access
$type Set contract type to ’HiRPC’ string ro

$pkey Public key bin ro

$sign Signature of $msg bin ro

$msg Message object table 15, table 16, table 17 {} ro

Table 14: HiRPC format

Parameter Description Type Access
$id Message id uint ro

$method Name of remote call function string ro

$params Params for the $method function (optional) {} ro

Table 15: HiRPC method message object

Parameter Description Type Access
$id Message id uint ro

$result Result of the $method call {} ro

Table 16: HiRPC success message object

Parameter Description Type Access
$id Message id string ro

$msg Error object table 18 {} ro

Table 17: HiPPC error response object

Parameter Description Type Access
$code Set contract type to ’HiRPC’ uint ro

$msg Error message string ro

$data Data object (optional) [] ro

Table 18: HiRPC error object

iv

B Crypto “Bank” bill

The bill has a value V , public/private key (y, x) and the bank bill number B, which is the hash
of the bill.
V can have the value of a natural number: V ∈ N
This is a newly printed bill:

Yalice = H(Lk+1 ‖ yalice) (8)

Bk+1 = H(V ‖ Lk+1 ‖ tk+1 ‖ T ‖ Yalice) (9)

(H is a hash function, is the hash of the previous confirmed Bull’s eye, is the consensus
timestamp of the current Epoch, is the epoch number and T is the contact type)

The total value of all bills of type T must be accounted for.

Vtotal,k+1 = Vtotal,k+1 + Vk (10)

Simple transaction Ownership of the bill can be transferred to Bob, if:

• Bob reveals his public key to Alice

• Alice generates a new bill and signs it with her private key

Because of the network fee, the value will be reduced by ∆V .

Vk+1 = Vk −∆V (11)

If Vk+1 is negative or zero, the transaction is eliminated and will not generate a new bill.

Vtotal,k+1 =

{
Vtotal,k −∆V if (Vk −∆V ≥ 0)

Vtotal,k − Vk otherwise
(12)

Resulting in:

Ybob = H(Bk ‖ ybob)
Bk+1 = H(V ‖ Bk ‖ tk ‖ k ‖ T ‖ Ybob)

The new bill is now written to the DART with key Bk+1:

Vk+1, Bk, tk, k, T, Ybob

The old bill Bk is removed from the DART.

The Split of a crypto bill
A bill can be split into a number of other bills if the combined value of the new nodes matches
the original:

Vk =

[
I−1∑
i=0

Vk+1,i

]
+ ∆V (13)

Each new bill is generated as:

Yk+1,i = H(Bk ‖ yk+1,i)

Bk+1,i = H(Vk+1 ‖ Bk ‖ tk ‖ k ‖ T ‖ Yk+1), yk+1,i 6= yk+1,j for (i 6= j)

v

All new bills marked Bk+1 are stored in the DART as before, and the old bills are removed.
Join or collect bills into one bill.
A number of bills can be collated into one bill if the value adds up as follows:

Va =

[
I−1∑
i=0

Vb,i

]
+ ∆V (14)

The new common bill number is generated by hashing a sorted list of the joined bill numbers.

B′k = H(Bk,0 ‖ Bk,1... ‖ Bk,I−1) (15)

The new bill number will be generated:

Y ′k+1 = H(B′k ‖ yk+1)

Bk+1 = H(Va ‖ B′k ‖ tk ‖ k ‖ T ‖ Y ′k+1)

These new consolidated bills are stored in the DART.

vi

C Network

The following steps are executed in the network for a standard transaction:

1. The transaction object is sent to one of the active nodes (an inactive node should relay the
transaction object to an active node).

2. When a node receives a transaction object, its format and the signatures of all the inputs
are checked.

3. If the transaction object is valid, it is added to the payload of an event.

4. The event is gossiped to the network.

5. The payload is put into an epoch list in order.

6. The epoch list is processed in the epoch order.

7. All inputs to the transaction are collected from the DART database.

8. The transaction script is executed when all inputs are read from the DART.

9. The output of the transaction scripts is gossiped to the network.

10. When the network reaches consensus on all outputs of the transactions, the DART is
updated.

11. The new Merkle root (Bull’s eye) of the DART is calculated, and the Bull’s eye is gossiped
to the network.

12. When the majority of the nodes reach consensus on the Bull’s eye, it is added to the DART
blockchain. The transaction is now approved.

vii

D Network Security

Network attack surface
In the following, the probability of an evil attack on the network is estimated via a simple

model.
The network participants are given by the flowing parameters.

M is the total number of nodes which are available for the network (This includes active and
passive nodes, not prospect nodes).

N is the number of active nodes running the networks.

E is the number of nodes controlled by the evil attacker.

nE is the number of evil nodes among the N active nodes.

The attack scenario is divided into two categories. The first category prevents the network
from reaching a consensus, and in the second category, the attacker is able to take over the
network and decide the faith what is going which transactions going it to a block.

First category:
If the evil attacker wants to prevent the networks from reaching a consensus, the evil attacker

needs more than 1/3 of the active nodes.

nE
N

>
1

3
(16)

Second category:
If the evil attacker wants to take over the network, the attacker needs more than 2/3 of the

active nodes.
nE
N

>
2

3
(17)

The calculated scenario is based on all the N nodes being changed at every epoch. In the real
network, this is not the case; only one node is swapped out and in at every 100 epoch. Thus the
probability of an evil takeover is significantly lower than this calculation. The model is chosen
because it is easy to express mathematically. The active nodes are selected randomly from M ,
and the probability that the evil attacker controls the first selected node is:

Definition of permutation formula:

P (n, r) =
n!

(n− r)!
(18)

Definition of combination formula:

C(n, r) =
n!

(n− r)! · r!
=
P (n, r)

r!
(19)

The probability of an evil node being selected is:

pE0 =
E

M
(20)

viii

The probability of selecting an evil node after selecting an evil node at the nth time is:

pEn
=

E − n
M − n

(21)

pGn,e
= 1− E − e

M − n
(22)

The probability of constructing an evil network
In this section, the probability of constructing an evil network is calculated.
The network is randomly constructed by selecting N nodes out of M nodes where E nodes are
evil.
A network is defined to be evil if the network contains nE or more evil nodes out of the N active
nodes according to formula first and second category formula above.

The probability that nE nodes out of N nodes are:

pnE
≤

nE−1∏
i=0

pEi
·

NE∏
i=nE

pGi,nE
· C(N,nE)

∣∣∣∣∣
NE=min(E,N)

(23)

If M � nE and E � nE the probability can be approximated to:

pnE
≈ pnE

E0
· (1− pE0)N−nE · C(N,nE) for

E − nE
M

≈ E − nE
M − nE

(24)

The probability that nE nodes or more are:

pn>nE
=

NE∑
i=nE

piE

∣∣∣∣∣
NE=min(E,N)

(25)

Example if N = 100 and M = 1000 and the attacker has E nodes, the probability that the
attacker can prevent the network from reaching a consensus is:

M = 31 M = 301 M = 1001

N = 11 N = 31 N = 101

E = 11 E = 31 E = 101

nE = 4 nE = 11 nE = 34

pn≥4 ≤ 0.42 pn≥11 ≤ 1.86 · 10−5 pn≥34 ≤ 2.86 · 10−12

For an attacker to take over the network:

M = 31 M = 301 M = 1001

N = 11 N = 31 N = 101

E = 11 E = 31 E = 101

nE = 4 nE = 21 nE = 68

pn≥4 ≤ 2.0 · 10−3 pn≥21 ≤ 1.2 · 10−17 pn≥68 ≤ 1.33 · 10−54

If we have an epoch time of 10 seconds and the probability is 10−53 then the evil attacker
can take over the network every 1046 years or around 1036 the current age of the universe.

ix

Note. For a very large number of M and N the probability can be expressed as a logarithm
formula to prevent numerical overflow.
Combination expressed as a logarithm formula:

Φ(n, r) =

n∑
k=r+1

ln(k)−
r∑

k=1

ln(k)

C(n, r) = eΦ(n,r)

The probability expresses as a logarithm:

ΠEn
=

(
nE−1∑
i=0

ln(pEi
)−

NE∑
i=nE

ln(1− pEi)

)∣∣∣∣∣
NE=min(E,N)

pEn
= e(ΠEn+Φ(N,nE))

If M � nE and E � nE the probability can be approximated to:

pEn ≈ e(nE ·ln(pE0
)−(NE−nE)·(1−ln(PE0

)+Φ(N,nE)))

≈ e((2·nE−NE)·ln(pE0
)+nE−NE+Φ(N,nE)) for

E − nE
M

≈ E − nE
M − nE

Security conclusion
By having a volume of, e.g. 1000 nodes and 100 active nodes, which could be a possible

amount for a network or shard, then the probability is so low that it will probably never occur
in practice. Thus, the actual security is that the nodes are decentralised. Therefore, the node
governance protocol is the actual security mechanism, because it regulates the uptake of nodes
aiming for it to be democratic, meaning both decentralised and one physical person having only
one node.

E − n
M − n

(26)

M − (E − e)− n
M − n

=
M − n
M − n

− E − e
M − n

(27)

x

E Gossip Model

Epoch consensus
In the following the probability for the Hashgraph-algorithm to reach an Epoch consensus

within H events consecutive is estimated in a simple model as follows.

To estimate the bandwidth and the propagation delay simple simulation model has been
implemented. The network participants are given by the flowing parameters.

H is the number of event for a node to reach Epoch-consensus.

M is the total number of nodes which are available for the network (This includes active and
passive nodes, not prospect nodes).

n is the number of nodes which has not yet been seen by the current node.

Nodes N Round Factor nround Bandwidth-Scale B
11 5 171
31 8 1396
101 12 14918
1001 16 1498538
10001 20 149868334
100001 24 14996214212

Table 19: Gossip simulation model

From the simulation the following expression can be driven. The average events per round:

nround = 2.2 · ln(N) (28)

The average estimated time between epochs:

tepoch = K · nround · tnet (29)

Whe the following is defined as:

N is the number of active nodes running the networks.

K is the epoch scaling factor (Typical value of K is typical a little larger than 3)

nround is the average events for between round.

tnet is the network delay.

tepoch is the average propagation delay per transaction.

Estimated bandwidth scale-factor:

B = Esize ·N2 (30)

Estimated bandwidth requirement:

BW =
B

nround·tnet

(31)

xi

B is the average bandwidth scale factor used by a node.

Esize is the average memory size of an event including transaction data.

BW is the average bandwidth used by a node.

xii

F DEX Trading Example

An example of the DEX matching and prices-discovery algorithm described in section 10 is
shown in the following tables. The trading-order-queue in table 20 and the two sorted sales list
are generated and shown in table 21 and table 22.

No Type Size P Q Eask Ebid Bought Sold Id
0 ATO 83TGS 147 10 0.0680 14.7000
1 ATO 6TGS 138 12 0.0870 11.5000
2 BTO 785ACL 116 10 0.0862 11.6000
3 ATO 79TGS 149 10 0.0671 14.9000
4 ATO 4TGS 113 10 0.0885 11.3000
5 BTO 217ACL 145 11 0.0759 13.1818
6 BTO 936ACL 115 13 0.1130 8.8462
7 BTO 205ACL 145 11 0.0759 13.1818
8 BTO 949ACL 146 10 0.0685 14.6000
9 BTO 888ACL 117 10 0.0855 11.7000

10 BTO 587ACL 112 10 0.0893 11.2000
11 BTO 314ACL 126 13 0.1032 9.6923
12 BTO 503ACL 118 12 0.1017 9.8333
13 ATO 72TGS 106 12 0.1132 8.8333
14 ATO 57TGS 108 13 0.1204 8.3077
15 BTO 341ACL 131 12 0.0916 10.9167
16 ATO 15TGS 127 10 0.0787 12.7000
17 ATO 43TGS 111 11 0.0991 10.0909
18 BTO 85ACL 136 12 0.0882 11.3333
19 ATO 29TGS 144 10 0.0694 14.4000
20 ATO 63TGS 144 14 0.0972 10.2857
21 BTO 716ACL 134 11 0.0821 12.1818
22 ATO 42TGS 139 12 0.0863 11.5833
23 ATO 37TGS 114 13 0.1140 8.7692
24 ATO 45TGS 136 10 0.0735 13.6000
25 ATO 44TGS 131 12 0.0916 10.9167
26 BTO 87ACL 134 10 0.0746 13.4000
27 BTO 739ACL 146 13 0.0890 11.2308
28 ATO 16TGS 138 14 0.1014 9.8571
29 ATO 42TGS 104 10 0.0962 10.4000
30 ATO 79TGS 101 12 0.1188 8.4167
31 BTO 725ACL 117 13 0.1111 9.0000
32 ATO 3TGS 144 13 0.0903 11.0769
33 BTO 226ACL 144 12 0.0833 12.0000
34 ATO 30TGS 140 13 0.0929 10.7692
35 BTO 526ACL 131 14 0.1069 9.3571

Table 20: DEX Trading-order-queue

xiii

No Type Size P Q Eask Ebid Bought Sold Id
14 ATO 57TGS 108 13 0.1204 8.3077
30 ATO 79TGS 101 12 0.1188 8.4167
23 ATO 37TGS 114 13 0.1140 8.7692
13 ATO 72TGS 106 12 0.1132 8.8333
28 ATO 16TGS 138 14 0.1014 9.8571
17 ATO 43TGS 111 11 0.0991 10.0909
20 ATO 63TGS 144 14 0.0972 10.2857
29 ATO 42TGS 104 10 0.0962 10.4000
34 ATO 30TGS 140 13 0.0929 10.7692
25 ATO 44TGS 131 12 0.0916 10.9167
32 ATO 3TGS 144 13 0.0903 11.0769
4 ATO 4TGS 113 10 0.0885 11.3000
1 ATO 6TGS 138 12 0.0870 11.5000

22 ATO 42TGS 139 12 0.0863 11.5833
16 ATO 15TGS 127 10 0.0787 12.7000
24 ATO 45TGS 136 10 0.0735 13.6000
19 ATO 29TGS 144 10 0.0694 14.4000
0 ATO 83TGS 147 10 0.0680 14.7000
3 ATO 79TGS 149 10 0.0671 14.9000

Table 21: Sort list of ATO or the ask-sales list

No Type Size P Q Eask Ebid Bought Sold Id
8 BTO 949ACL 146 10 0.0685 14.6000

26 BTO 87ACL 134 10 0.0746 13.4000
7 BTO 205ACL 145 11 0.0759 13.1818
5 BTO 217ACL 145 11 0.0759 13.1818

21 BTO 716ACL 134 11 0.0821 12.1818
33 BTO 226ACL 144 12 0.0833 12.0000
9 BTO 888ACL 117 10 0.0855 11.7000
2 BTO 785ACL 116 10 0.0862 11.6000

18 BTO 85ACL 136 12 0.0882 11.3333
27 BTO 739ACL 146 13 0.0890 11.2308
10 BTO 587ACL 112 10 0.0893 11.2000
15 BTO 341ACL 131 12 0.0916 10.9167
12 BTO 503ACL 118 12 0.1017 9.8333
11 BTO 314ACL 126 13 0.1032 9.6923
35 BTO 526ACL 131 14 0.1069 9.3571
31 BTO 725ACL 117 13 0.1111 9.0000
6 BTO 936ACL 115 13 0.1130 8.8462

Table 22: Sort list of BTO or the bid-sales list

xiv

F.1 DEX After the Trading Match

The trade is executed from the first order in the queue which is the top of the table 20 and
the matching pairs shown in table 23. A BTO order from the table 20 is searched in table 21
to see if Ebid,BTO ≥ Ebid,ATO and if the order is an ATO the table 22 is searched and if
Eask,ATO ≥ Eask,BTO a match is found. The executed trading-orders are shown in table 24 and
the orders which remain are shown in table 27. The parameter Id shown in the tables, represents
the execution order and matching Id of the trading pairs and No is the priority order in the
trading-order-queue.

Buyer → Seller No → No Ebuyer Eseller Bought Sold Id
ATO→BTO 1→8 0.0870 0.0685 6.00TGS 87.60ACL 1
BTO→ATO 2→14 11.6000 8.3077 473.54ACL 57.00TGS 2
ATO→BTO 4→26 0.0885 0.0746 4.00TGS 53.60ACL 3
BTO→ATO 5→30 13.1818 8.4167 217.00ACL 25.78TGS 4
BTO→ATO 6→23 8.8462 8.7692 324.46ACL 37.00TGS 5
BTO→ATO 7→13 13.1818 8.8333 205.00ACL 23.21TGS 6
BTO→ATO 9→28 11.7000 9.8571 157.71ACL 16.00TGS 7
BTO→ATO 10→17 11.2000 10.0909 433.91ACL 43.00TGS 8
BTO→ATO 15→20 10.9167 10.2857 341.00ACL 33.15TGS 9
BTO→ATO 18→29 11.3333 10.4000 85.00ACL 8.17TGS 10
BTO→ATO 21→34 12.1818 10.7692 323.08ACL 30.00TGS 11
ATO→BTO 22→33 0.0863 0.0833 18.83TGS 226.00ACL 12
ATO→BTO 25→27 0.0916 0.0890 44.00TGS 494.15ACL 13

Table 23: List of the matching pairs

xv

No Type Size P Q Eask Ebid Bought Sold Id
1 ATO 6TGS 138 12 0.0870 11.5000 6.00TGS 1
2 BTO 785ACL 116 10 0.0862 11.6000 473.54ACL 2
4 ATO 4TGS 113 10 0.0885 11.3000 4.00TGS 3
5 BTO 217ACL 145 11 0.0759 13.1818 217.00ACL 4
6 BTO 936ACL 115 13 0.1130 8.8462 324.46ACL 5
7 BTO 205ACL 145 11 0.0759 13.1818 205.00ACL 6
8 BTO 949ACL 146 10 0.0685 14.6000 87.60ACL 1
9 BTO 888ACL 117 10 0.0855 11.7000 157.71ACL 7

10 BTO 587ACL 112 10 0.0893 11.2000 433.91ACL 8
13 ATO 72TGS 106 12 0.1132 8.8333 23.21TGS 6
14 ATO 57TGS 108 13 0.1204 8.3077 57.00TGS 2
15 BTO 341ACL 131 12 0.0916 10.9167 341.00ACL 9
17 ATO 43TGS 111 11 0.0991 10.0909 43.00TGS 8
18 BTO 85ACL 136 12 0.0882 11.3333 85.00ACL 10
20 ATO 63TGS 144 14 0.0972 10.2857 33.15TGS 9
21 BTO 716ACL 134 11 0.0821 12.1818 323.08ACL 11
22 ATO 42TGS 139 12 0.0863 11.5833 18.83TGS 12
23 ATO 37TGS 114 13 0.1140 8.7692 37.00TGS 5
25 ATO 44TGS 131 12 0.0916 10.9167 44.00TGS 13
26 BTO 87ACL 134 10 0.0746 13.4000 53.60ACL 3
27 BTO 739ACL 146 13 0.0890 11.2308 494.15ACL 13
28 ATO 16TGS 138 14 0.1014 9.8571 16.00TGS 7
29 ATO 42TGS 104 10 0.0962 10.4000 8.17TGS 10
30 ATO 79TGS 101 12 0.1188 8.4167 25.78TGS 4
33 BTO 226ACL 144 12 0.0833 12.0000 226.00ACL 12
34 ATO 30TGS 140 13 0.0929 10.7692 30.00TGS 11

Table 24: Orders which are matched and executed

xvi

No Type Size P Q Eask Ebid Bought Sold Id
14 ATO 57TGS 108 13 0.1204 8.3077 57.00TGS 2
30 ATO 79TGS 101 12 0.1188 8.4167 25.78TGS 4
23 ATO 37TGS 114 13 0.1140 8.7692 37.00TGS 5
13 ATO 72TGS 106 12 0.1132 8.8333 23.21TGS 6
28 ATO 16TGS 138 14 0.1014 9.8571 16.00TGS 7
17 ATO 43TGS 111 11 0.0991 10.0909 43.00TGS 8
20 ATO 63TGS 144 14 0.0972 10.2857 33.15TGS 9
29 ATO 42TGS 104 10 0.0962 10.4000 8.17TGS 10
34 ATO 30TGS 140 13 0.0929 10.7692 30.00TGS 11
25 ATO 44TGS 131 12 0.0916 10.9167 44.00TGS 13
4 ATO 4TGS 113 10 0.0885 11.3000 4.00TGS 3
1 ATO 6TGS 138 12 0.0870 11.5000 6.00TGS 1

22 ATO 42TGS 139 12 0.0863 11.5833 18.83TGS 12

Table 25: Sort list of ATO which are executed

No Type Size P Q Eask Ebid Bought Sold Id
8 BTO 949ACL 146 10 0.0685 14.6000 87.60ACL 1

26 BTO 87ACL 134 10 0.0746 13.4000 53.60ACL 3
7 BTO 205ACL 145 11 0.0759 13.1818 205.00ACL 6
5 BTO 217ACL 145 11 0.0759 13.1818 217.00ACL 4

21 BTO 716ACL 134 11 0.0821 12.1818 323.08ACL 11
33 BTO 226ACL 144 12 0.0833 12.0000 226.00ACL 12
9 BTO 888ACL 117 10 0.0855 11.7000 157.71ACL 7
2 BTO 785ACL 116 10 0.0862 11.6000 473.54ACL 2

18 BTO 85ACL 136 12 0.0882 11.3333 85.00ACL 10
27 BTO 739ACL 146 13 0.0890 11.2308 494.15ACL 13
10 BTO 587ACL 112 10 0.0893 11.2000 433.91ACL 8
15 BTO 341ACL 131 12 0.0916 10.9167 341.00ACL 9
6 BTO 936ACL 115 13 0.1130 8.8462 324.46ACL 5

Table 26: Sort list of BTO which are executed

xvii

No Type Size P Q Eask Ebid Bought Sold Id
0 ATO 83TGS 147 10 0.0680 14.7000
3 ATO 79TGS 149 10 0.0671 14.9000

11 BTO 314ACL 126 13 0.1032 9.6923
12 BTO 503ACL 118 12 0.1017 9.8333
16 ATO 15TGS 127 10 0.0787 12.7000
19 ATO 29TGS 144 10 0.0694 14.4000
24 ATO 45TGS 136 10 0.0735 13.6000
31 BTO 725ACL 117 13 0.1111 9.0000
32 ATO 3TGS 144 13 0.0903 11.0769
35 BTO 526ACL 131 14 0.1069 9.3571

Table 27: DEX Trading order queue of the orders which are not yet executed

No Type Size P Q Eask Ebid Bought Sold Id
32 ATO 3TGS 144 13 0.0903 11.0769
16 ATO 15TGS 127 10 0.0787 12.7000
24 ATO 45TGS 136 10 0.0735 13.6000
19 ATO 29TGS 144 10 0.0694 14.4000
0 ATO 83TGS 147 10 0.0680 14.7000
3 ATO 79TGS 149 10 0.0671 14.9000

Table 28: Sort list of ATO which are not yet executed

No Type Size P Q Eask Ebid Bought Sold Id
12 BTO 503ACL 118 12 0.1017 9.8333
11 BTO 314ACL 126 13 0.1032 9.6923
35 BTO 526ACL 131 14 0.1069 9.3571
31 BTO 725ACL 117 13 0.1111 9.0000

Table 29: Sort list of BTO which are not yet executed

xviii

G Consensus order function

The code sample below shows the implementation of the consensus order function.

1 bool o r d e r l e s s (const Event a , const Event b) @safe {
2 o r d e r c o m p a r e i t e r a t i o n c o u n t++;
3 i f (a . r e c e i v e d o r d e r i s b . r e c e i v e d o r d e r) {
4 i f (a . mother && b . mother) {
5 return o r d e r l e s s (a . mother , b . mother) ;
6 }
7 i f (a . f a t h e r && b . f a t h e r) {
8 return o r d e r l e s s (a . f a t h e r , b . f a t h e r) ;
9 }

10 i f (! a . f a t h e r) {
11 return fa l se ;
12 }
13 i f (b . f a t h e r) {
14 return true ;
15 }
16

17 bool r a r e l e s s (Buf f e r a , Buf f e r b) {
18 const ab = hashgraph . h i rpc . net . calcHash (a ˜ b) ;
19 const ba = hashgraph . h i rpc . net . calcHash (b ˜ a) ;
20 const A = (BitMask (ab) . count) ;
21 const B = (BitMask (ba) . count) ;
22 i f (A i s B) {
23 return r a r e l e s s (ab , ba) ;
24 }
25 return A < B;
26 }
27

28 return r a r e l e s s (a . f i n g e r p r i n t , b . f i n g e r p r i n t) ;
29 }
30 return a . r e c e i v e d o r d e r < b . r e c e i v e d o r d e r ;
31 }

xix

H Gene Distance

Each node has a gene string, which is used to calculate the gene-score of the node. This node-gene
is represented as a binary string of bits.

γ = [b0, b1..bN−1] bi ∈ B (32)

The gene distance between two nodes A and B is calculated as the number of counted ’1’ of
the exclusive-or between the two bits vectors.

Λ(γA, γB) =

N−1∑
i=0

(γA,i ⊗ γB,i) (33)

The total gene score from a node A to all active nodes can be calculated as:

Λnetwork =
1

M
·
M−1∑
j=0

Λ(γj , γA) (34)

Where M is the number of active nodes in the network.
The gene of the active node is mutated for each epoch via a UDR random number. A random

bit select from the N bits is randomly set to ’0’ or ’1’.
Over time the gene-score between the active nodes is reduced, and this will statistically reduce

the score compared to the inactive nodes, thereby increasing the probability of an inactive node
to be swapped in as an active node.

xx

I Mutation rules

In this sections the algorithm of bill gene mutations is described.

I.1 Mutation base

A mutation base vector R is generated as an UDR bit-vector

R = [µ0, µ1..µN−1] µi ∈ B (35)

I.2 Population gene mutation

From a number M of gene vectors Tj a population mutation gene B is defined.

B = [β0, β1..βN−1] βi ∈ B (36)

For all 1’s for each vector is summed, as follows.

si =

M−1∑
j=0

tj,i, tj,i ∈ B (37)

Where si is the sums of 1’s for bit i for all vectors Tj and tj,i is the bits in the Tj vectors.
The bits in the population gene is defined as follows.

βi =

1 if (2 · si > M)

µi if (2 · si = M)

0 otherwise

(38)

Where mui is the mutation base for the population M .

I.3 Production gene mutation

From a gene pair a and b the production gene is defined as:

γi =

{
ai if (µi = 0)

bi otherwise
(39)

And µi is the mutation base of the production mutation.

I.4 Transaction mutation

The bill mutation rules is as follows.

B.1 A population gene B is calculated for all inputs

B.2 The genes of the outputs is production mutated with the epoch gene

The epoch gene is generated for all the outputs as follows:

P.1 A population gene P is calculated for all the transaction output genes

P.2 The previous epoch gene E is produced with P to generate a new E gene

The transaction rewards lottery is selected based on the gene distance between the output
gene and the current epoch gene.

xxi

List of Tables

1 Probability of an attack versus nodes . 2
2 Tagion Node stack . 3
3 NCL Network Name Card . 13
4 NCR Network Name Record . 14
5 NNR Network Node Record . 14
6 Runlevels for the Scripting engine . 16
7 Scripting types supported . 16
8 Standard archived Bill object . 18
9 Transaction scripting object . 18
10 Transaction object . 18
11 ATO HiBON to buy TGS for ALC . 25
12 BTO HiBON to buy ALC for TGS . 26
13 HiBON Basic data-types . iii
14 HiRPC format . iv
15 HiRPC method message object . iv
16 HiRPC success message object . iv
17 HiPPC error response object . iv
18 HiRPC error object . iv
19 Gossip simulation model . xi
20 DEX Trading-order-queue . xiii
21 Sort list of ATO or the ask-sales list . xiv
22 Sort list of BTO or the bid-sales list . xiv
23 List of the matching pairs . xv
24 Orders which are matched and executed . xvi
25 Sort list of ATO which are executed . xvii
26 Sort list of BTO which are executed . xvii
27 DEX Trading order queue of the orders which are not yet executed xviii
28 Sort list of ATO which are not yet executed . xviii
29 Sort list of BTO which are not yet executed . xviii

xxii

List of Figures

1 The Network Architecture . 1
2 The Tagion Node Architure . 4
3 Hashgraph with altitude(A) and order parameter Ω 6
4 Wavefront communication state . 8
5 Events and relations . 9
6 The structure of the DART database . 10
7 The data structural layout of DART database . 11
8 Private and Public domain . 22
9 A transaction is represent as a hexagon with a flame the small-bank-note with a

t represent bills . 23
10 Tagion Decentralised Exchange based on Lightning Network 26
11 DEX transaction flow . 28

xxiii

List of Abbreviations

ALC alien-currency

ATO Ask Trade Orders

BFT Byzantine Fault Tolerant

BSON Binary JSON

BTO Bid Trade Orders

Bullseye DART Merkle Root

DART Distributed Archive of Random Transactions

DEX Decentralised Exchange

DHT Distribute Hash Tabel

DLT Distributed Ledger Technology

HiBON Hash-invariant Binary Object Notation

HiRPC Hash invariant Remote Procedure Call

HTLC Hashed Time Lock Contract

LN Lightning Network

MultSig Multi Signature

NCL Name Card Label

NCR Name Card Record

NNC Network Name Card

NNR Network Node Record

PIA Parameter Indexed Archive

POW Prof Of Work

SMT Sparse Merkle Tree

TMN Tagion Main Network

TN Tagion Network

TSN Tagion Sub Network

TSNA Tagion Sub Network Account

TSNF Tagion Sub Network Funds

TVM Tagion Virtual Machine

UDR Unpredictable Deterministic Random

xxiv

References

[1] LEEMON BAIRD. “THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM: FAIR,
FAST, BYZANTINE FAULT TOLERANCE”. In: (). Accessed: Swirlds web side.

[2] Bleser Rasmussen Carsten. “Sparsed merkle tree method and system for processing sets of
data for storing and keeping track of the same in a specific network”. In: US20210067330A1
(2020). Owner: i25s AG.

[3] Bleser Rasmussen Carsten. “System and a method implementing a directed acyclic graph
(dag) consensus algorithm via a gossip protocol”. In: US20210227027A1 (2020). Owner:
i25s AG.

[4] githib team libp2p githib team. “Modular peer-to-peer networking stack”. In: (). url:
https://github.com/libp2p.

xxv

https://github.com/libp2p

	Introduction
	Network Architecture
	Network security
	Node Architecture

	Hashgraph Consensus Mechanism
	Gossip protocol and Wavefront propagation
	Consensus Ordering

	Distributed Database (DART)
	Sparse Merkle Tree

	Special Records
	Name card contract
	Node contract
	Sub-Network contract

	Tagion Virtual Engine
	Transaction Scripts
	Business Model
	Parallelism
	Privacy
	Decentralised Exchange using Lightning Network
	Trading flow using Lightning and Tagion Network
	Price discovery and matching
	Exchange execution rules

	HiBON Data format
	HiRPC – HiBON Remote Procedure Call

	Crypto “Bank” bill
	Network
	Network Security
	Gossip Model
	DEX Trading Example
	DEX After the Trading Match

	Consensus order function
	Gene Distance
	Mutation rules
	Mutation base
	Population gene mutation
	Production gene mutation
	Transaction mutation

